Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(± 0.3) × 10(-14) cm(3)/s or 3.5(± 1.0) × 10(8) water molecules per s, which is in the range of AQPs (3.4 ∼ 40.3 × 10(8) water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10(8) water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼ 10(7) water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼ 2.6 × 10(5) pores per μm(2)) is two orders of magnitude higher than that of CNT membranes (0.1 ∼ 2.5 × 10(3) pores per μm(2)). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.

Highly permeable artificial water channels that can self-assemble into two-dimensional arrays

DE ZORZI, RITA;
2015-01-01

Abstract

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(± 0.3) × 10(-14) cm(3)/s or 3.5(± 1.0) × 10(8) water molecules per s, which is in the range of AQPs (3.4 ∼ 40.3 × 10(8) water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10(8) water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼ 10(7) water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼ 2.6 × 10(5) pores per μm(2)) is two orders of magnitude higher than that of CNT membranes (0.1 ∼ 2.5 × 10(3) pores per μm(2)). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.
File in questo prodotto:
File Dimensione Formato  
PNAS-2015-Shen-9810-5.pdf

Accesso chiuso

Descrizione: PDF versione editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2872201_PNAS-2015-Shen-9810-5-Post_print.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2872201
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 152
  • ???jsp.display-item.citation.isi??? 161
social impact