We compute the six-dimensional effective action of the heterotic string compactified on K3 for the standard embedding and for a class of backgrounds with line bundles and appropriate Yang-Mills fluxes. We compute the couplings of the charged scalars and the bundle moduli as functions of the geometrical K3 moduli from a Kaluza-Klein analysis. We derive the D-term potential and show that in the flux backgrounds U (1) vector multiplets become massive by a Stückelberg mechanism.
Titolo: | 6D effective action of heterotic compactification on K3 with nontrivial gauge bundles |
Autori: | |
Data di pubblicazione: | 2012 |
Rivista: | |
Abstract: | We compute the six-dimensional effective action of the heterotic string compactified on K3 for the standard embedding and for a class of backgrounds with line bundles and appropriate Yang-Mills fluxes. We compute the couplings of the charged scalars and the bundle moduli as functions of the geometrical K3 moduli from a Kaluza-Klein analysis. We derive the D-term potential and show that in the flux backgrounds U (1) vector multiplets become massive by a Stückelberg mechanism. |
Handle: | http://hdl.handle.net/11368/2874211 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/JHEP04(2012)028 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.