A p-box is a simple generalization of a distribution function, useful to study a random number in the presence of imprecision. We propose an extension of p-boxes to cover imprecise evaluations of pairs of random numbers and term them bivariate p-boxes. We analyze their rather weak consistency properties, since they are at best (but generally not) equivalent to 2-coherence. We therefore focus on the relevant subclass of coherent p-boxes, corresponding to coherent lower probabilities on special domains. Several properties of coherent p-boxes are investigated and compared with those of (one-dimensional) p-boxes or of bivariate distribution functions.

Bivariate p-boxes

PELESSONI, RENATO;VICIG, PAOLO;
2016

Abstract

A p-box is a simple generalization of a distribution function, useful to study a random number in the presence of imprecision. We propose an extension of p-boxes to cover imprecise evaluations of pairs of random numbers and term them bivariate p-boxes. We analyze their rather weak consistency properties, since they are at best (but generally not) equivalent to 2-coherence. We therefore focus on the relevant subclass of coherent p-boxes, corresponding to coherent lower probabilities on special domains. Several properties of coherent p-boxes are investigated and compared with those of (one-dimensional) p-boxes or of bivariate distribution functions.
http://www.worldscientific.com/doi/abs/10.1142/S0218488516500124?src=recsys
File in questo prodotto:
File Dimensione Formato  
s0218488516500124.pdf

non disponibili

Descrizione: Articolo su rivista internazionale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 382.16 kB
Formato Adobe PDF
382.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bivariate p boxes accepted author manuscript.pdf

embargo fino al 31/08/2017

Descrizione: Accepted author manuscript
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 411.82 kB
Formato Adobe PDF
411.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2874374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact