Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9–1.5 pmol mg−1 protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3–5 pmol mg−1 protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5–13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function.

Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells

ZIBERNA, Lovro;PASSAMONTI, SABINA
2016-01-01

Abstract

Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9–1.5 pmol mg−1 protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3–5 pmol mg−1 protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5–13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function.
File in questo prodotto:
File Dimensione Formato  
Ziberna 2016.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 585.86 kB
Formato Adobe PDF
585.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2876325
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 84
social impact