We have developed the open-source software Tesseroids, a set of command-line programs to perform forward modeling of gravitational fields in spherical coordinates. The software is implemented in the C programming language and uses tesseroids (spherical prisms) for the discretization of the subsurface mass distribution. The gravitational fields of tesseroids are calculated numerically using the Gauss-Legendre quadrature (GLQ). We have improved upon an adaptive discretization algorithm to guarantee the accuracy of the GLQ integration. Our implementation of adaptive discretization uses a “stack-based” algorithm instead of recursion to achieve more control over execution errors and corner cases. The algorithm is controlled by a scalar value called the distance-size ratio (D) that determines the accuracy of the integration as well as the computation time. We have determined optimal values of D for the gravitational potential, gravitational acceleration, and gravity gradient tensor by comparing the computed tesseroids effects with those of a homogenous spherical shell. The values required for a maximum relative error of 0.1% of the shell effects are D = 1 for the gravitational potential, D = 1.5 for the gravitational acceleration, and D = 8 for the gravity gradients. Contrary to previous assumptions, our results show that the potential and its first and second derivatives require different values of D to achieve the same accuracy. These values were incorporated as defaults in the software.
Titolo: | Tesseroids: forward modeling gravitational fields in spherical coordinates |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | We have developed the open-source software Tesseroids, a set of command-line programs to perform forward modeling of gravitational fields in spherical coordinates. The software is implemented in the C programming language and uses tesseroids (spherical prisms) for the discretization of the subsurface mass distribution. The gravitational fields of tesseroids are calculated numerically using the Gauss-Legendre quadrature (GLQ). We have improved upon an adaptive discretization algorithm to guarantee the accuracy of the GLQ integration. Our implementation of adaptive discretization uses a “stack-based” algorithm instead of recursion to achieve more control over execution errors and corner cases. The algorithm is controlled by a scalar value called the distance-size ratio (D) that determines the accuracy of the integration as well as the computation time. We have determined optimal values of D for the gravitational potential, gravitational acceleration, and gravity gradient tensor by comparing the computed tesseroids effects with those of a homogenous spherical shell. The values required for a maximum relative error of 0.1% of the shell effects are D = 1 for the gravitational potential, D = 1.5 for the gravitational acceleration, and D = 8 for the gravity gradients. Contrary to previous assumptions, our results show that the potential and its first and second derivatives require different values of D to achieve the same accuracy. These values were incorporated as defaults in the software. |
Handle: | http://hdl.handle.net/11368/2877741 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1190/GEO2015-0204.1 |
URL: | http://library.seg.org/doi/abs/10.1190/geo2015-0204.1 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Geophysics_16.pdf | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |