We have developed the open-source software Tesseroids, a set of command-line programs to perform forward modeling of gravitational fields in spherical coordinates. The software is implemented in the C programming language and uses tesseroids (spherical prisms) for the discretization of the subsurface mass distribution. The gravitational fields of tesseroids are calculated numerically using the Gauss-Legendre quadrature (GLQ). We have improved upon an adaptive discretization algorithm to guarantee the accuracy of the GLQ integration. Our implementation of adaptive discretization uses a “stack-based” algorithm instead of recursion to achieve more control over execution errors and corner cases. The algorithm is controlled by a scalar value called the distance-size ratio (D) that determines the accuracy of the integration as well as the computation time. We have determined optimal values of D for the gravitational potential, gravitational acceleration, and gravity gradient tensor by comparing the computed tesseroids effects with those of a homogenous spherical shell. The values required for a maximum relative error of 0.1% of the shell effects are D = 1 for the gravitational potential, D = 1.5 for the gravitational acceleration, and D = 8 for the gravity gradients. Contrary to previous assumptions, our results show that the potential and its first and second derivatives require different values of D to achieve the same accuracy. These values were incorporated as defaults in the software.

Tesseroids: forward modeling gravitational fields in spherical coordinates

BRAITENBERG, CARLA
2016

Abstract

We have developed the open-source software Tesseroids, a set of command-line programs to perform forward modeling of gravitational fields in spherical coordinates. The software is implemented in the C programming language and uses tesseroids (spherical prisms) for the discretization of the subsurface mass distribution. The gravitational fields of tesseroids are calculated numerically using the Gauss-Legendre quadrature (GLQ). We have improved upon an adaptive discretization algorithm to guarantee the accuracy of the GLQ integration. Our implementation of adaptive discretization uses a “stack-based” algorithm instead of recursion to achieve more control over execution errors and corner cases. The algorithm is controlled by a scalar value called the distance-size ratio (D) that determines the accuracy of the integration as well as the computation time. We have determined optimal values of D for the gravitational potential, gravitational acceleration, and gravity gradient tensor by comparing the computed tesseroids effects with those of a homogenous spherical shell. The values required for a maximum relative error of 0.1% of the shell effects are D = 1 for the gravitational potential, D = 1.5 for the gravitational acceleration, and D = 8 for the gravity gradients. Contrary to previous assumptions, our results show that the potential and its first and second derivatives require different values of D to achieve the same accuracy. These values were incorporated as defaults in the software.
http://library.seg.org/doi/abs/10.1190/geo2015-0204.1
File in questo prodotto:
File Dimensione Formato  
Geophysics_16.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 544.57 kB
Formato Adobe PDF
544.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2877741_Geophysics_16-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2877741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 103
social impact