Shape-Memory Alloys (SMAs) are a class of metal materials that exhibit two outstanding properties, the superelastic and the shape-memory effects. Taking advantage of these properties, several SMA actuator wires and plates have been proposed over the last years in robotic, automotive, and biomedical engineering. In this paper, the feasibility of a novel design concept of SMA-reinforced laminated glass panels is proposed, based on an adaptive embedded system built up of SMA wires. Glass panels used as cladding walls in facades have in fact typically high size-to-thickness ratios, hence, major restrictions in design are represented by prevention of glass failure and large deflections. It is expected, based on the current investigation, that useful design recommendations can be derived for this novel design concept.

FE Exploratory Investigation on the Performance of SMA-Reinforced Laminated Glass Panels

BEDON, CHIARA;
2016-01-01

Abstract

Shape-Memory Alloys (SMAs) are a class of metal materials that exhibit two outstanding properties, the superelastic and the shape-memory effects. Taking advantage of these properties, several SMA actuator wires and plates have been proposed over the last years in robotic, automotive, and biomedical engineering. In this paper, the feasibility of a novel design concept of SMA-reinforced laminated glass panels is proposed, based on an adaptive embedded system built up of SMA wires. Glass panels used as cladding walls in facades have in fact typically high size-to-thickness ratios, hence, major restrictions in design are represented by prevention of glass failure and large deflections. It is expected, based on the current investigation, that useful design recommendations can be derived for this novel design concept.
2016
Pubblicato
http://onlinelibrary.wiley.com/wol1/doi/10.1002/adem.201600096/full
File in questo prodotto:
File Dimensione Formato  
Advanced engineering materials.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 5.96 MB
Formato Adobe PDF
5.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2878401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact