Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.
A Distributed Networked Approach for Fault Detection of Large-scale Systems
PARISINI, Thomas;
2017-01-01
Abstract
Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.File | Dimensione | Formato | |
---|---|---|---|
IEEE publisher version.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2879025_IEEE publisher version-PostPrint.pdf
accesso aperto
Descrizione: PostPrint VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
2.26 MB
Formato
Adobe PDF
|
2.26 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.