Regular expressions are routinely used in a variety of different application domains. But building a regular expression involves a considerable amount of skill, expertise, and creativity. In this work, the authors investigate whether a machine can surrogate these qualities and automatically construct regular expressions for tasks of realistic complexity. They discuss a large-scale experiment involving more than 1,700 users on 10 challenging tasks. The authors compare the solutions constructed by these users to those constructed by a tool based on genetic programming that they recently developed and made publicly available. The quality of automatically constructed solutions turned out to be similar to the quality of those constructed by the most skilled user group; the time for automatic construction was likewise similar to the time required by human users.
Can a Machine Replace Humans in Building Regular Expressions? A Case Study
BARTOLI, Alberto;DE LORENZO, ANDREA;MEDVET, Eric;TARLAO, FABIANO
2016-01-01
Abstract
Regular expressions are routinely used in a variety of different application domains. But building a regular expression involves a considerable amount of skill, expertise, and creativity. In this work, the authors investigate whether a machine can surrogate these qualities and automatically construct regular expressions for tasks of realistic complexity. They discuss a large-scale experiment involving more than 1,700 users on 10 challenging tasks. The authors compare the solutions constructed by these users to those constructed by a tool based on genetic programming that they recently developed and made publicly available. The quality of automatically constructed solutions turned out to be similar to the quality of those constructed by the most skilled user group; the time for automatic construction was likewise similar to the time required by human users.File | Dimensione | Formato | |
---|---|---|---|
ieee-is-editoriale.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
465.32 kB
Formato
Adobe PDF
|
465.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2016-IEEEIS-CanAMachineBuildRegexes.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
451.49 kB
Formato
Adobe PDF
|
451.49 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.