The evidence for a new neutral scalar particle from the 750 GeV diphoton excess, and the absence of any other signal of new physics at the LHC so far, suggests the existence of new coloured scalars. To study this possibility, we propose a supersymmetry inspired simplified model, extending the Standard Model with a singlet scalar and with heavy scalar fields carrying both colour and electric charges – new scalar quarks. To allow the latter to decay, and to generate the dark matter of the Universe, we also add a neutral fermion to the particle content. We show that this model provides a two-parameter fit to the observed diphoton excess consistently with cosmology, while the allowed parameter space is bounded by the consistency of the model. In the context of our simplified model this implies the existence of other supersymmetric particles accessible at the LHC, rendering this scenario falsifiable.
A SUSY inspired simplified model for the 750 GeV diphoton excess
GABRIELLI, Emidio;
2016-01-01
Abstract
The evidence for a new neutral scalar particle from the 750 GeV diphoton excess, and the absence of any other signal of new physics at the LHC so far, suggests the existence of new coloured scalars. To study this possibility, we propose a supersymmetry inspired simplified model, extending the Standard Model with a singlet scalar and with heavy scalar fields carrying both colour and electric charges – new scalar quarks. To allow the latter to decay, and to generate the dark matter of the Universe, we also add a neutral fermion to the particle content. We show that this model provides a two-parameter fit to the observed diphoton excess consistently with cosmology, while the allowed parameter space is bounded by the consistency of the model. In the context of our simplified model this implies the existence of other supersymmetric particles accessible at the LHC, rendering this scenario falsifiable.File | Dimensione | Formato | |
---|---|---|---|
PLB_756.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
298.85 kB
Formato
Adobe PDF
|
298.85 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.