Dark photons γ¯ mediating long-range forces in a dark sector are predicted by various new physics scenarios, and are being intensively searched for in experiments. We extend a previous study of a new discovery process for dark photons proceedings via Higgs-boson production at the LHC. Thanks to the non-decoupling properties of the Higgs boson, BR(H→γγ¯) values up to a few percent are possible for a massless dark photon, even for heavy dark-sector scenarios. The corresponding signature consists (for a Higgs boson at rest) of a striking monochromatic photon with energy Eγ=mH/2, and similar amount of missing energy. We perform a model independent analysis at the LHC of both the gluon-fusion and VBF Higgs production mechanisms at 14 TeV, including parton-shower effects, and updating our previous parton-level analysis at 8 TeV in the gluon-fusion channel by a more realistic background modeling. We find that a 5σ sensitivity can be reached in the gluon-fusion channel for BR(H→γγ¯)≃0.1% with an integrated luminosity of L≃300fb−1. The corresponding VBF reach is instead restricted to 1%. Such decay rates can be naturally obtained in dark-photon scenarios arising from unbroken U(1)F models explaining the origin and hierarchy of the Yukawa couplings, strongly motivating the search for this exotic Higgs decay at the LHC.

Dark-photon searches via Higgs-boson production at the LHC

GABRIELLI, Emidio;
2016-01-01

Abstract

Dark photons γ¯ mediating long-range forces in a dark sector are predicted by various new physics scenarios, and are being intensively searched for in experiments. We extend a previous study of a new discovery process for dark photons proceedings via Higgs-boson production at the LHC. Thanks to the non-decoupling properties of the Higgs boson, BR(H→γγ¯) values up to a few percent are possible for a massless dark photon, even for heavy dark-sector scenarios. The corresponding signature consists (for a Higgs boson at rest) of a striking monochromatic photon with energy Eγ=mH/2, and similar amount of missing energy. We perform a model independent analysis at the LHC of both the gluon-fusion and VBF Higgs production mechanisms at 14 TeV, including parton-shower effects, and updating our previous parton-level analysis at 8 TeV in the gluon-fusion channel by a more realistic background modeling. We find that a 5σ sensitivity can be reached in the gluon-fusion channel for BR(H→γγ¯)≃0.1% with an integrated luminosity of L≃300fb−1. The corresponding VBF reach is instead restricted to 1%. Such decay rates can be naturally obtained in dark-photon scenarios arising from unbroken U(1)F models explaining the origin and hierarchy of the Yukawa couplings, strongly motivating the search for this exotic Higgs decay at the LHC.
File in questo prodotto:
File Dimensione Formato  
PRD_93.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 275.85 kB
Formato Adobe PDF
275.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2886123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 30
social impact