We evaluate the applicability and the effectiveness of texture attribute analysis of 2-D and 3-D GPR datasets obtained in different archaeological environments. Textural attributes are successfully used in seismic stratigraphic studies for hydrocarbon exploration to improve the interpretation of complex subsurface structures. We use a gray-level co-occurrence matrix (GLCM) algorithm to compute second-order statistical measures of textural characteristics, such as contrast, energy, entropy, and homogeneity. Textural attributes provide specific information about the data, and can highlight characteristics as uniformity or complexity, which complement the interpretation of amplitude data and integrate the features extracted from conventional attributes. The results from three archaeological case studies demonstrate that the proposed texture analysis can enhance understanding of GPR data by providing clearer images of distribution, volume, and shape of potential archaeological targets and related stratigraphic units, particularly in combination with the conventional GPR attributes. Such strategy improves the interpretability of GPR data, and can be very helpful for archaeological excavation planning and, more generally, for buried cultural heritage assessment.
Titolo: | Texture Attribute Analysis of GPR Data for Archaeological Prospection |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | We evaluate the applicability and the effectiveness of texture attribute analysis of 2-D and 3-D GPR datasets obtained in different archaeological environments. Textural attributes are successfully used in seismic stratigraphic studies for hydrocarbon exploration to improve the interpretation of complex subsurface structures. We use a gray-level co-occurrence matrix (GLCM) algorithm to compute second-order statistical measures of textural characteristics, such as contrast, energy, entropy, and homogeneity. Textural attributes provide specific information about the data, and can highlight characteristics as uniformity or complexity, which complement the interpretation of amplitude data and integrate the features extracted from conventional attributes. The results from three archaeological case studies demonstrate that the proposed texture analysis can enhance understanding of GPR data by providing clearer images of distribution, volume, and shape of potential archaeological targets and related stratigraphic units, particularly in combination with the conventional GPR attributes. Such strategy improves the interpretability of GPR data, and can be very helpful for archaeological excavation planning and, more generally, for buried cultural heritage assessment. |
Handle: | http://hdl.handle.net/11368/2886466 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00024-016-1355-3 |
URL: | http://link.springer.com/article/10.1007%2Fs00024-016-1355-3 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
art3A10.10072Fs00024-016-1355-3_PUBLISHED_low_res.pdf | Articolo completo | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |