The development of efficient contrast agents for cell labelling coupled with powerful medical imaging techniques is of great interest for monitoring cell trafficking with potential clinical applications such as organ repair and regenerative medicine. In this paper, functionalised multi-walled carbon nanotubes (MWNTs) were engineered for cell labelling in T1-weighted MRI applications. These sophisticated constructs were covalently functionalised with the gadolinium (Gd) chelating agent, diethylene triamine pentaacetic acid (DTPA), enabling tight attachment of Gd atoms onto the nanotube surface. The resulting Gd-labelled MWNTs were found to be stable over 2 weeks in water and mouse serum and high payload of Gd atoms could be loaded onto the nanotubes. The r1 relaxivity of the Gd-MWNTs was a 3-fold higher than of the clinically approved T1 contrast agent Magnevist at a magnetic field strength of 7T. The contrast efficiency, expressed as the r1 relaxivity, of the Gd-MWNTs in Human Umbilical Vein Endothelial cells (HUVEC) was investigated at 7T and was found to be around 6.6 mM-1 s-1. There was no reduction of the contrast efficiency after internalisation in HUVECs, which was imparted to the ability of carbon nanotubes to translocate the cell membrane.

Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking

DA ROS, TATIANA;PRATO, MAURIZIO;
2016-01-01

Abstract

The development of efficient contrast agents for cell labelling coupled with powerful medical imaging techniques is of great interest for monitoring cell trafficking with potential clinical applications such as organ repair and regenerative medicine. In this paper, functionalised multi-walled carbon nanotubes (MWNTs) were engineered for cell labelling in T1-weighted MRI applications. These sophisticated constructs were covalently functionalised with the gadolinium (Gd) chelating agent, diethylene triamine pentaacetic acid (DTPA), enabling tight attachment of Gd atoms onto the nanotube surface. The resulting Gd-labelled MWNTs were found to be stable over 2 weeks in water and mouse serum and high payload of Gd atoms could be loaded onto the nanotubes. The r1 relaxivity of the Gd-MWNTs was a 3-fold higher than of the clinically approved T1 contrast agent Magnevist at a magnetic field strength of 7T. The contrast efficiency, expressed as the r1 relaxivity, of the Gd-MWNTs in Human Umbilical Vein Endothelial cells (HUVEC) was investigated at 7T and was found to be around 6.6 mM-1 s-1. There was no reduction of the contrast efficiency after internalisation in HUVECs, which was imparted to the ability of carbon nanotubes to translocate the cell membrane.
2016
http://www.sciencedirect.com/science/article/pii/S000862231530169X
File in questo prodotto:
File Dimensione Formato  
Carbon97(2016)126.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
mmc1.pdf

Accesso chiuso

Descrizione: Supporting information
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 416.75 kB
Formato Adobe PDF
416.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2888209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 38
social impact