Anticipating species distributions in space and time is necessary for effective biodiversity conservation and for prioritising management interventions. This is especially true when considering invasive species. In such a case, anticipating their spread is important to effectively plan management actions. However, considering uncertainty in the output of species distribution models is critical for correctly interpreting results and avoiding inappropriate decision-making. In particular, when dealing with species inventories, the bias resulting from sampling effort may lead to an over- or under-estimation of the local density of occurrences of a species. In this paper we propose an innovative method to i) map sampling effort bias using cartogram models and ii) explicitly consider such uncertainty in the modeling procedure under a Bayesian framework, which allows the integration of multilevel input data with prior information to improve the anticipation species distributions.

Anticipating species distributions: handling sampling effort bias under a Bayesian framework

BACARO, Giovanni;
2017-01-01

Abstract

Anticipating species distributions in space and time is necessary for effective biodiversity conservation and for prioritising management interventions. This is especially true when considering invasive species. In such a case, anticipating their spread is important to effectively plan management actions. However, considering uncertainty in the output of species distribution models is critical for correctly interpreting results and avoiding inappropriate decision-making. In particular, when dealing with species inventories, the bias resulting from sampling effort may lead to an over- or under-estimation of the local density of occurrences of a species. In this paper we propose an innovative method to i) map sampling effort bias using cartogram models and ii) explicitly consider such uncertainty in the modeling procedure under a Bayesian framework, which allows the integration of multilevel input data with prior information to improve the anticipation species distributions.
File in questo prodotto:
File Dimensione Formato  
STOTEN-D-16-03474R1_EdManSite.pdf

Accesso chiuso

Tipologia: Documento in Pre-print
Licenza: Digital Rights Management non definito
Dimensione 7.81 MB
Formato Adobe PDF
7.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bacaro et al..pdf

Open Access dal 08/02/2019

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2888506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact