In this paper we study, for any positive integer $k$ and for any subset\ $I$\ of $\QTR{bf}{N}^{\ast }$, the Banach space $E_{I}$ of the bounded real sequences $\left\{ x_{n}\right\} _{n\in I}$, and a measure over $\left( \QTR{bf}{R}^{I},\QTR{cal}{B}^{(I)}\right) $ that generalizes the $k$-dimensional Lebesgue one. Moreover, we expose a differentiation theory for the functions defined over this space. The main result of our paper is a change of variables' formula for the integration of the measurable real functions on $\left( \QTR{bf}{R}^{I},\QTR{cal}{B}^{(I)}\right) $. This change of variables is defined by some infinite-dimensional functions with properties that generalize the analogous ones of the standard finite-dimensional diffeomorphisms.

Differentiation Theory over Infinite-Dimensional Banach Spaces

ASCI, CLAUDIO
2016

Abstract

In this paper we study, for any positive integer $k$ and for any subset\ $I$\ of $\QTR{bf}{N}^{\ast }$, the Banach space $E_{I}$ of the bounded real sequences $\left\{ x_{n}\right\} _{n\in I}$, and a measure over $\left( \QTR{bf}{R}^{I},\QTR{cal}{B}^{(I)}\right) $ that generalizes the $k$-dimensional Lebesgue one. Moreover, we expose a differentiation theory for the functions defined over this space. The main result of our paper is a change of variables' formula for the integration of the measurable real functions on $\left( \QTR{bf}{R}^{I},\QTR{cal}{B}^{(I)}\right) $. This change of variables is defined by some infinite-dimensional functions with properties that generalize the analogous ones of the standard finite-dimensional diffeomorphisms.
Pubblicato
https://www.hindawi.com/journals/jmath/2016/2619087/abs
File in questo prodotto:
File Dimensione Formato  
2619087.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2888977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact