Photoelectron asymmetry parameters (β) of the gerade and ungerade C 2s-1 derived states of ethyne, ethene and ethane as a function of photon energy have been calculated and experimentally measured, to extend the search of interference effects on angular distributions to polyatomic molecules. The calculations cover the electron energy range from 0 to 1100 eV while the experimental measurements cover the electron energy range from 30 to 220 eV. Clear oscillations are interpreted in terms of interference of the photoelectron wave emitted from the two possible C 2s centres, or equivalently from the gerade and ungerade states associated with them. This is a microscopic analog of Young's double-slit experiment. The effect is however quite small and requires very high experimental accuracy to be detected. It is best evidenced in the behaviour of β difference between the two channels. The connection between β trends and structural parameters shows the expected inverse correlation between oscillation period and distance between the carbon atoms, but do not simply parallel the analogous behaviour found in cross sections.

Interference effects in photoelectron asymmetry parameter (β) trends of C 2s-1 states of ethyne, ethene and ethane

DECLEVA, PIETRO;TOFFOLI, DANIELE;
2016-01-01

Abstract

Photoelectron asymmetry parameters (β) of the gerade and ungerade C 2s-1 derived states of ethyne, ethene and ethane as a function of photon energy have been calculated and experimentally measured, to extend the search of interference effects on angular distributions to polyatomic molecules. The calculations cover the electron energy range from 0 to 1100 eV while the experimental measurements cover the electron energy range from 30 to 220 eV. Clear oscillations are interpreted in terms of interference of the photoelectron wave emitted from the two possible C 2s centres, or equivalently from the gerade and ungerade states associated with them. This is a microscopic analog of Young's double-slit experiment. The effect is however quite small and requires very high experimental accuracy to be detected. It is best evidenced in the behaviour of β difference between the two channels. The connection between β trends and structural parameters shows the expected inverse correlation between oscillation period and distance between the carbon atoms, but do not simply parallel the analogous behaviour found in cross sections.
2016
http://iopscience.iop.org/article/10.1088/0953-4075/49/23/235102/pdf
File in questo prodotto:
File Dimensione Formato  
decleva2016.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2889159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact