One of the most defining features of cancer is aberrant cell communication; therefore, a molecular understanding of the intricate network established among tumor cells and their microenvironment could significantly improve comprehension and clinical management of cancer. The tumor suppressor DAB2IP (Disabled homolog 2 interacting protein), also known as AIP1 (ASK1 interacting protein), has an important role in this context, as it modulates signal transduction by multiple inflammatory cytokines and growth factors. DAB2IP is a Ras-GAP, and negatively controls Ras-dependent mitogenic signals. In addition, acting as a signaling adaptor, DAB2IP modulates other key oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptors. Therefore, DAB2IP inactivation can provide a selective advantage to tumors initiated by a variety of driver mutations. In line with this role, DAB2IP expression is frequently impaired by methylation in cancer. Interestingly, recent studies reveal that tumor cells can employ other sophisticated mechanisms to disable DAB2IP at the post-transcriptional level. We review the mechanisms and consequences of DAB2IP inactivation in cancer, with the purpose to support and improve research aimed to counteract such mechanisms. We suggest that DAB2IP reactivation in cancer cells could be a strategy to coordinately dampen multiple oncogenic pathways, potentially limiting progression of a wide spectrum of tumors.Cell Death and Differentiation advance online publication, 18 November 2016; doi:10.1038/cdd.2016.134.

Block one, unleash a hundred. Mechanisms of DAB2IP inactivation in cancer

BELLAZZO, ARIANNA;DI MININ, GIULIO;COLLAVIN, LICIO
2016

Abstract

One of the most defining features of cancer is aberrant cell communication; therefore, a molecular understanding of the intricate network established among tumor cells and their microenvironment could significantly improve comprehension and clinical management of cancer. The tumor suppressor DAB2IP (Disabled homolog 2 interacting protein), also known as AIP1 (ASK1 interacting protein), has an important role in this context, as it modulates signal transduction by multiple inflammatory cytokines and growth factors. DAB2IP is a Ras-GAP, and negatively controls Ras-dependent mitogenic signals. In addition, acting as a signaling adaptor, DAB2IP modulates other key oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptors. Therefore, DAB2IP inactivation can provide a selective advantage to tumors initiated by a variety of driver mutations. In line with this role, DAB2IP expression is frequently impaired by methylation in cancer. Interestingly, recent studies reveal that tumor cells can employ other sophisticated mechanisms to disable DAB2IP at the post-transcriptional level. We review the mechanisms and consequences of DAB2IP inactivation in cancer, with the purpose to support and improve research aimed to counteract such mechanisms. We suggest that DAB2IP reactivation in cancer cells could be a strategy to coordinately dampen multiple oncogenic pathways, potentially limiting progression of a wide spectrum of tumors.Cell Death and Differentiation advance online publication, 18 November 2016; doi:10.1038/cdd.2016.134.
Pubblicato
http://www.nature.com/cdd/journal/v24/n1/full/cdd2016134a.html
File in questo prodotto:
File Dimensione Formato  
10.1038@cdd.2016.134.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 594.26 kB
Formato Adobe PDF
594.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2889402
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
social impact