Growth by chemical vapor deposition (CVD) leads to multilayer WS2 of very high quality, based on high-resolution angle-resolved photoemission spectroscopy. The experimental valence band electronic structure is considered to be in good agreement with that obtained from density functional theory calculations. We find the spin-orbit splitting at the K-point to be 420 ± 20 meV with a hole effective mass of −0.35 ± 0.02 me for the upper spin-orbit component (the branch closer to the Fermi level) and −0.43 ± 0.07 me for the lower spin-orbit component. As predicted by theory, a thickness-dependent increase of bandwidth is observed at the top of the valence band, in the region of the Brillouin zone center. The top of the valence band of the CVD-prepared films exhibits a substantial binding energy, consistent with n-type behavior, and in agreement with transistor characteristics acquired using devices incorporating the same WS2 material.
Titolo: | Band structure characterization of WS2 grown by chemical vapor deposition |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | Growth by chemical vapor deposition (CVD) leads to multilayer WS2 of very high quality, based on high-resolution angle-resolved photoemission spectroscopy. The experimental valence band electronic structure is considered to be in good agreement with that obtained from density functional theory calculations. We find the spin-orbit splitting at the K-point to be 420 ± 20 meV with a hole effective mass of −0.35 ± 0.02 me for the upper spin-orbit component (the branch closer to the Fermi level) and −0.43 ± 0.07 me for the lower spin-orbit component. As predicted by theory, a thickness-dependent increase of bandwidth is observed at the top of the valence band, in the region of the Brillouin zone center. The top of the valence band of the CVD-prepared films exhibits a substantial binding energy, consistent with n-type behavior, and in agreement with transistor characteristics acquired using devices incorporating the same WS2 material. |
Handle: | http://hdl.handle.net/11368/2891205 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1063/1.4954278 |
URL: | http://aip.scitation.org/doi/full/10.1063/1.4954278 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
APL_WS2_2016.pdf | N/A | Digital Rights Management non definito | Administrator Richiedi una copia |