Zirconia-based composites were developed through an innovative processing route able to tune compositional and microstructural features very precisely. Fully-dense ceria-stabilized zirconia ceramics (84 vol% Ce-TZP) containing equiaxed alumina (8 vol%Al2O3) and elongated strontium hexa-aluminate (8 vol% SrAl12O19) second phases were obtained by conventional sintering. This work deals with the effect of the zirconia stabilization degree (CeO2 in the range 10.0–11.5 mol%) on the transformability and mechanical properties of Ce-TZP-Al2O3-SrAl12O19 materials. Vickers hardness, biaxial flexural strength and Single-edge V-notched beam tests revealed a strong influence of ceria content on the mechanical properties. Composites with 11.0 mol% CeO2 or above exhibited the classical behaviour of brittle ceramics, with no apparent plasticity and very low strain to failure. On the contrary, composites with 10.5 mol% CeO2 or less showed large transformation-induced plasticity and almost no dispersion in strength data. Materials with 10.5 mol% of ceria showed the highest values in terms of biaxial bending strength (up to 1.1 GPa) and fracture toughness (>10 MPa√m). In these ceramics, as zirconia transformation precedes failure, the Weibull modulus was exceptionally high and reached a value of 60, which is in the range typically reported for metals. The results achieved demonstrate the high potential of using these new strong, tough and stable zirconia-based composites in structural biomedical applications.

Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability

LUGHI, VANNI;BONIFACIO, ALOIS;SERGO, VALTER;
2017

Abstract

Zirconia-based composites were developed through an innovative processing route able to tune compositional and microstructural features very precisely. Fully-dense ceria-stabilized zirconia ceramics (84 vol% Ce-TZP) containing equiaxed alumina (8 vol%Al2O3) and elongated strontium hexa-aluminate (8 vol% SrAl12O19) second phases were obtained by conventional sintering. This work deals with the effect of the zirconia stabilization degree (CeO2 in the range 10.0–11.5 mol%) on the transformability and mechanical properties of Ce-TZP-Al2O3-SrAl12O19 materials. Vickers hardness, biaxial flexural strength and Single-edge V-notched beam tests revealed a strong influence of ceria content on the mechanical properties. Composites with 11.0 mol% CeO2 or above exhibited the classical behaviour of brittle ceramics, with no apparent plasticity and very low strain to failure. On the contrary, composites with 10.5 mol% CeO2 or less showed large transformation-induced plasticity and almost no dispersion in strength data. Materials with 10.5 mol% of ceria showed the highest values in terms of biaxial bending strength (up to 1.1 GPa) and fracture toughness (>10 MPa√m). In these ceramics, as zirconia transformation precedes failure, the Weibull modulus was exceptionally high and reached a value of 60, which is in the range typically reported for metals. The results achieved demonstrate the high potential of using these new strong, tough and stable zirconia-based composites in structural biomedical applications.
Pubblicato
http://www.sciencedirect.com/science/article/pii/S1742706116306341
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1742706116306341-main.pdf

non disponibili

Descrizione: free at link: http://dx.doi.org/10.1016/j.actbio.2016.11.040
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2891869_1-s2.0-S1742706116306341-main-PostPrint.pdf

accesso aperto

Descrizione: PostPrint VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2891869
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 54
social impact