We report three surfactants, with cationic N,N-di-(3-aminopropyl)-N-methylamine (DAPMA) head groups and aliphatic chains connected via an amide linkage, and investigate their ability to self-assemble and bind polyanionic heparin – a process of potential clinical importance in coagulation control. Modifying the hydrophobic chain length tunes the self-assembly event, with C16-DAPMA having the lowest critical micelle concentration and also being the optimal heparin binder. Remarkably highly structured hierarchical nanoscale aggregates are formed on binding between the spherical cationic micelles and linear polyanionic heparin. C14-DAPMA and C16-DAPMA yield organized polycrystalline assemblies as observed by transmission electron microscopy (TEM), predicted in solution by mesoscale simulations and characterized by small-angle X-ray scattering (SAXS). This confirms that the micelles remain intact during the hierarchical assembly process and become packed in a face-centered cubic manner. The nanoscale assembly formed by C16-DAPMA showed the highest degree of order. Importantly, these studies indicate the impact of hydrophobic modification on self-assembly and heparin binding, demonstrate remarkably high stability of these self-assembled micelles even when forming strong electrostatic interactions with heparin, and provide structural insights into nanoscale hierarchical electrostatic assemblies.

Emergence of highly-ordered hierarchical nanoscale aggregates on electrostatic binding of self-assembled multivalent (SAMul) cationic micelles with polyanionic heparin

POSOCCO, PAOLA;LAURINI, ERIK;PRICL, SABRINA;
2017

Abstract

We report three surfactants, with cationic N,N-di-(3-aminopropyl)-N-methylamine (DAPMA) head groups and aliphatic chains connected via an amide linkage, and investigate their ability to self-assemble and bind polyanionic heparin – a process of potential clinical importance in coagulation control. Modifying the hydrophobic chain length tunes the self-assembly event, with C16-DAPMA having the lowest critical micelle concentration and also being the optimal heparin binder. Remarkably highly structured hierarchical nanoscale aggregates are formed on binding between the spherical cationic micelles and linear polyanionic heparin. C14-DAPMA and C16-DAPMA yield organized polycrystalline assemblies as observed by transmission electron microscopy (TEM), predicted in solution by mesoscale simulations and characterized by small-angle X-ray scattering (SAXS). This confirms that the micelles remain intact during the hierarchical assembly process and become packed in a face-centered cubic manner. The nanoscale assembly formed by C16-DAPMA showed the highest degree of order. Importantly, these studies indicate the impact of hydrophobic modification on self-assembly and heparin binding, demonstrate remarkably high stability of these self-assembled micelles even when forming strong electrostatic interactions with heparin, and provide structural insights into nanoscale hierarchical electrostatic assemblies.
Pubblicato
http://pubs.rsc.org/en/Content/ArticleLanding/2017/TB/C6TB02512A#!divAbstract
File in questo prodotto:
File Dimensione Formato  
C6TB02512A.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF Visualizza/Apri
c6tb02512a.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 3.71 MB
Formato Adobe PDF
3.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2892549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact