Reaction of a ditopic urea “strut” (L1) with cis-(tmen)Pd(NO3)2 yielded a [3+3] self-assembled molecular triangle (T) [L1 = 1,4-di(4-pyridylureido)benzene; tmen = N,N,N′,N′-tetramethylethane-1,2-diamine]. Replacing cis-(tmen)Pd(NO3)2 in the above reaction with an equimolar mixture of Pd(NO3)2 and a clip-type donor (L2) yielded a template-free multicomponent 3D trigonal prism (P) decorated with multiple urea moieties [L2 = 3,3′-(1H-1,2,4-triazole-3,5-diyl)dipyridine]. This prism (P) was characterized by NMR spectroscopy, and the structure was confirmed by X-ray crystallography. The P was employed as an effective hydrogen-bond-donor catalyst for Michael reactions of a series of water-insoluble nitro-olefins in an aqueous medium. The P showed better catalytic activity compared to the urea-based ligand L1 and the triangle T. Moreover, the confined nanospace of P in addition to large product outlet windows makes this 3D architecture a perfect molecular vessel to catalyze Diels–Alder reactions of 9-hydroxymethylanthracene with N-substituted maleimide in the aqueous medium. The present results demonstrate new observations on catalytic aqueous Diels–Alder and Michael reactions in heterogeneous fashion employing a discrete 3D architecture of Pd(II). The prism was recycled by simple filtration and reused several times without significant loss of activity.
Titolo: | Urea-Functionalized Self-Assembled Molecular Prism for Heterogeneous Catalysis in Water |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | Reaction of a ditopic urea “strut” (L1) with cis-(tmen)Pd(NO3)2 yielded a [3+3] self-assembled molecular triangle (T) [L1 = 1,4-di(4-pyridylureido)benzene; tmen = N,N,N′,N′-tetramethylethane-1,2-diamine]. Replacing cis-(tmen)Pd(NO3)2 in the above reaction with an equimolar mixture of Pd(NO3)2 and a clip-type donor (L2) yielded a template-free multicomponent 3D trigonal prism (P) decorated with multiple urea moieties [L2 = 3,3′-(1H-1,2,4-triazole-3,5-diyl)dipyridine]. This prism (P) was characterized by NMR spectroscopy, and the structure was confirmed by X-ray crystallography. The P was employed as an effective hydrogen-bond-donor catalyst for Michael reactions of a series of water-insoluble nitro-olefins in an aqueous medium. The P showed better catalytic activity compared to the urea-based ligand L1 and the triangle T. Moreover, the confined nanospace of P in addition to large product outlet windows makes this 3D architecture a perfect molecular vessel to catalyze Diels–Alder reactions of 9-hydroxymethylanthracene with N-substituted maleimide in the aqueous medium. The present results demonstrate new observations on catalytic aqueous Diels–Alder and Michael reactions in heterogeneous fashion employing a discrete 3D architecture of Pd(II). The prism was recycled by simple filtration and reused several times without significant loss of activity. |
Handle: | http://hdl.handle.net/11368/2893453 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1021/jacs.5b12237 |
URL: | http://pubs.acs.org/doi/suppl/10.1021/jacs.5b12237 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
jacs%2E5b12237.pdf | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia | |
ja5b12237_si_001.pdf | Supporting information | Altro materiale allegato | Digital Rights Management non definito | Administrator Richiedi una copia |