We prove constructive estimates for elastic plates modeledby the Reissner–Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.

A generalized Korn inequality and strong unique continuation for the Reissner–Mindlin plate system

ROSSET, EDI;
2017-01-01

Abstract

We prove constructive estimates for elastic plates modeledby the Reissner–Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.
File in questo prodotto:
File Dimensione Formato  
MRV_JDE_2017.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 347.74 kB
Formato Adobe PDF
347.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2899833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact