We prove constructive estimates for elastic plates modeledby the Reissner–Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.
A generalized Korn inequality and strong unique continuation for the Reissner–Mindlin plate system
ROSSET, EDI;
2017-01-01
Abstract
We prove constructive estimates for elastic plates modeledby the Reissner–Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MRV_JDE_2017.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
347.74 kB
Formato
Adobe PDF
|
347.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.