We consider the two-dimensional version of Calderòn’s problem. When the Dirichlet-to-Neumann map is assumed to be known up to an error level ε_0, we investigate how the resolution in the determination of the unknown conductivity deteriorates the farther one goes from the boundary. We provide explicit formulas for the resolution, which apply to conductivities which are perturbations, concentrated near an interior point q, of the homogeneous conductivity.

Depth dependent resolution in Electrical Impedance Tomography

ALESSANDRINI, GIOVANNI;SCAPIN, ANDREA
2017-01-01

Abstract

We consider the two-dimensional version of Calderòn’s problem. When the Dirichlet-to-Neumann map is assumed to be known up to an error level ε_0, we investigate how the resolution in the determination of the unknown conductivity deteriorates the farther one goes from the boundary. We provide explicit formulas for the resolution, which apply to conductivities which are perturbations, concentrated near an interior point q, of the homogeneous conductivity.
Pubblicato
https://www.degruyter.com/view/j/jiip.2017.25.issue-3/jiip-2017-0029/jiip-2017-0029.xml
File in questo prodotto:
File Dimensione Formato  
j invers.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 7.48 MB
Formato Adobe PDF
7.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2901202
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact