Trabectedin is a marine natural product, approved in Europe for the treatment of soft tissue sarcoma and relapsed ovarian cancer. Clinical and experimental evidence indicates that trabectedin is particularly effective against myxoid liposarcomas where response is associated to regression of capillary networks. Here, we investigated the mechanism of the antiangiogenic activity of trabectedin in myxoid liposarcomas. Trabectedin directly targeted endothelial cells, impairing functions relying on extracellular matrix remodeling (invasion and branching morphogenesis) through the upregulation of the inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2. Increased TIMPs synthesis by the tumor microenvironment following trabectedin treatment was confirmed in xenograft models of myxoid liposarcoma. In addition, trabectedin upregulated tumor cell expression of the endogenous inhibitor thrombospondin-1 (TSP-1, a key regulator of angiogenesis-dependent dormancy in sarcoma), in in vivo models of myxoid liposarcomas, in vitro cell lines and primary cell cultures from patients' myxoid liposarcomas. Chromatin Immunoprecipitation analysis showed that trabectedin displaced the master regulator of adipogenesis C/EBPβ from the TSP-1 promoter, indicating an association between the up-regulation of TSP-1 and induction of adipocytic differentiation program by trabectedin. We conclude that trabectedin inhibits angiogenesis through multiple mechanisms, including directly affecting endothelial cells in the tumor microenvironment--with a potentially widespread activity--and targeting tumor cells' angiogenic activity, linked to a tumor-specific molecular alteration.

Antiangiogenic activity of trabectedin in myxoid liposarcoma: Involvement of host TIMP-1 and TIMP-2 and tumor thrombospondin-1

BRICH, SILVIA;
2015

Abstract

Trabectedin is a marine natural product, approved in Europe for the treatment of soft tissue sarcoma and relapsed ovarian cancer. Clinical and experimental evidence indicates that trabectedin is particularly effective against myxoid liposarcomas where response is associated to regression of capillary networks. Here, we investigated the mechanism of the antiangiogenic activity of trabectedin in myxoid liposarcomas. Trabectedin directly targeted endothelial cells, impairing functions relying on extracellular matrix remodeling (invasion and branching morphogenesis) through the upregulation of the inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2. Increased TIMPs synthesis by the tumor microenvironment following trabectedin treatment was confirmed in xenograft models of myxoid liposarcoma. In addition, trabectedin upregulated tumor cell expression of the endogenous inhibitor thrombospondin-1 (TSP-1, a key regulator of angiogenesis-dependent dormancy in sarcoma), in in vivo models of myxoid liposarcomas, in vitro cell lines and primary cell cultures from patients' myxoid liposarcomas. Chromatin Immunoprecipitation analysis showed that trabectedin displaced the master regulator of adipogenesis C/EBPβ from the TSP-1 promoter, indicating an association between the up-regulation of TSP-1 and induction of adipocytic differentiation program by trabectedin. We conclude that trabectedin inhibits angiogenesis through multiple mechanisms, including directly affecting endothelial cells in the tumor microenvironment--with a potentially widespread activity--and targeting tumor cells' angiogenic activity, linked to a tumor-specific molecular alteration.
19-giu-2014
Pubblicato
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0215
File in questo prodotto:
File Dimensione Formato  
Dossi_et_al-2015-International_Journal_of_Cancer.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 491.48 kB
Formato Adobe PDF
491.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2904166
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 42
social impact