Estrogens induce breast tumor cell proliferation by directly regulating gene expression via the estrogen receptor (ER) transcriptional activity and by affecting growth factor signaling pathways such as mitogen-activated protein kinase (MAPK) and AKT/mammalian target of rapamycin Complex1 (mTORC1) cascades. In this study we demonstrated the preclinical therapeutic efficacy of combining the aromatase inhibitor letrozole with the multi-kinase inhibitor sorafenib in aromatase-expressing breast cancer cell lines. Treatment with letrozole reduced testosterone-driven cell proliferation, by inhibiting the synthesis of estrogens. Sorafenib inhibited cell proliferation in a concentration-dependent manner; this effect was not dependent on sorafenib-mediated inhibition of Raf1, but involved the down-regulation of mTORC1 and its targets p70S6K and 4E-binding protein 1 (4E-BP1). At concentrations of 5-10 μM the growth-inhibitory effect of sorafenib was associated with the induction of apoptosis, as indicated by release of cytochrome c and Apoptosis-Inducing Factor into the cytosol, activation of caspase-9 and caspase-7, and PARP-1 cleavage. Combination of letrozole and sorafenib produced a synergistic inhibition of cell proliferation associated with an enhanced accumulation of cells in the G(0)/G(1) phase of the cell cycle and with a down-regulation of the cell cycle regulatory proteins c-myc, cyclin D1, and phospho-Rb. In addition, longer experiments (12 weeks) demonstrated that sorafenib may be effective in preventing the acquisition of resistance towards letrozole. Together, these results indicate that combination of letrozole and sorafenib might constitute a promising approach to the treatment of hormone-dependent breast cancer
Synergistic activity of letrozole and sorafenib on breast cancer cells
GENERALI, DANIELE;
2010-01-01
Abstract
Estrogens induce breast tumor cell proliferation by directly regulating gene expression via the estrogen receptor (ER) transcriptional activity and by affecting growth factor signaling pathways such as mitogen-activated protein kinase (MAPK) and AKT/mammalian target of rapamycin Complex1 (mTORC1) cascades. In this study we demonstrated the preclinical therapeutic efficacy of combining the aromatase inhibitor letrozole with the multi-kinase inhibitor sorafenib in aromatase-expressing breast cancer cell lines. Treatment with letrozole reduced testosterone-driven cell proliferation, by inhibiting the synthesis of estrogens. Sorafenib inhibited cell proliferation in a concentration-dependent manner; this effect was not dependent on sorafenib-mediated inhibition of Raf1, but involved the down-regulation of mTORC1 and its targets p70S6K and 4E-binding protein 1 (4E-BP1). At concentrations of 5-10 μM the growth-inhibitory effect of sorafenib was associated with the induction of apoptosis, as indicated by release of cytochrome c and Apoptosis-Inducing Factor into the cytosol, activation of caspase-9 and caspase-7, and PARP-1 cleavage. Combination of letrozole and sorafenib produced a synergistic inhibition of cell proliferation associated with an enhanced accumulation of cells in the G(0)/G(1) phase of the cell cycle and with a down-regulation of the cell cycle regulatory proteins c-myc, cyclin D1, and phospho-Rb. In addition, longer experiments (12 weeks) demonstrated that sorafenib may be effective in preventing the acquisition of resistance towards letrozole. Together, these results indicate that combination of letrozole and sorafenib might constitute a promising approach to the treatment of hormone-dependent breast cancerPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.