The mitochondrial kinase inhibitor dichloroacetate (DCA) has recently received attention in oncology due to its ability to target glycolysis. However, DCA molecule exhibits poor bioavailability and cellular uptake with limited ability to reach its target mitochondria. To overcome these biases, we have synthesized novel DCA-loaded compounds. The selection of the most promising therapeutic molecule was evaluated by combining in vitro assays, to test the antitumoral potential on leukemic cells, and a preliminary characterization of the molecule stability in vivo, in mice. Among the newly synthesized compounds, we have selected the multiple DCA-loaded compound 10, characterized by a tertiary amine scaffold, because it exhibited enhanced (>30-fold) in vitro antitumor activity with respect to DCA and increased in vivo stability. On the basis of these results, we believe that compound 10 should be considered for further preclinical evaluations for the treatment of cancers and/or other diseases characterized by altered metabolic origin.

Design, Synthesis, and Biological Characterization of Novel Mitochondria Targeted Dichloroacetate-Loaded Compounds with Antileukemic Activity

CELEGHINI, CLAUDIO;
2016-01-01

Abstract

The mitochondrial kinase inhibitor dichloroacetate (DCA) has recently received attention in oncology due to its ability to target glycolysis. However, DCA molecule exhibits poor bioavailability and cellular uptake with limited ability to reach its target mitochondria. To overcome these biases, we have synthesized novel DCA-loaded compounds. The selection of the most promising therapeutic molecule was evaluated by combining in vitro assays, to test the antitumoral potential on leukemic cells, and a preliminary characterization of the molecule stability in vivo, in mice. Among the newly synthesized compounds, we have selected the multiple DCA-loaded compound 10, characterized by a tertiary amine scaffold, because it exhibited enhanced (>30-fold) in vitro antitumor activity with respect to DCA and increased in vivo stability. On the basis of these results, we believe that compound 10 should be considered for further preclinical evaluations for the treatment of cancers and/or other diseases characterized by altered metabolic origin.
File in questo prodotto:
File Dimensione Formato  
acs.jmedchem.5b01165.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2904545
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact