Sterilization methods such as ɣ-irradiation, steam sterilization and ethylene oxide gas treatment can have negative effects on molecular structure and properties of polysaccharide-based biomaterials. In this perspective, the use of supercritical carbon dioxide (scCO2) has been proposed as an alternative method for biomaterial sterilization. In this work, chemical, mechanical and biological properties of polysaccharidic membranes for surgical applications were investigated after sterilization by scCO2. Four sets of sterilizing conditions were considered and SEC analyses were performed in order to identify the one with lower impact on the polysaccharidic matrix of membranes (alginate). Mechanical tests showed that the resistance of membranes was slightly affected after sterilization. Biological analyses proved the biocompatibility of the sterilized membranes both in vitro and in a preliminary in vivo test. Overall, this study points out that this sterilization technique can be successfully employed to achieve an effective and safe sterilization of polysaccharidic membranes for surgical use

Effects of supercritical carbon dioxide sterilization on polysaccharidic membranes for surgical applications

SCOGNAMIGLIO, FRANCESCA;BORGOGNA, MASSIMILIANO ANTONIO;TRAVAN, Andrea;DONATI, IVAN;PAOLETTI, SERGIO;MARSICH, ELEONORA
2017-01-01

Abstract

Sterilization methods such as ɣ-irradiation, steam sterilization and ethylene oxide gas treatment can have negative effects on molecular structure and properties of polysaccharide-based biomaterials. In this perspective, the use of supercritical carbon dioxide (scCO2) has been proposed as an alternative method for biomaterial sterilization. In this work, chemical, mechanical and biological properties of polysaccharidic membranes for surgical applications were investigated after sterilization by scCO2. Four sets of sterilizing conditions were considered and SEC analyses were performed in order to identify the one with lower impact on the polysaccharidic matrix of membranes (alginate). Mechanical tests showed that the resistance of membranes was slightly affected after sterilization. Biological analyses proved the biocompatibility of the sterilized membranes both in vitro and in a preliminary in vivo test. Overall, this study points out that this sterilization technique can be successfully employed to achieve an effective and safe sterilization of polysaccharidic membranes for surgical use
File in questo prodotto:
File Dimensione Formato  
Carbhoydrate polymers.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2905730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact