In this paper we study some properties of the classical Arnoldi-based methods for solving infinite dimensional linear equations involving compact operators. These problems are intrinsically ill-posed since a compact operator does not admit a bounded inverse. We study the convergence properties and the ability of these algorithms to estimate the dominant singular values of the operator.

Some properties of the Arnoldi based methods for linear ill-posed problems

NOVATI, PAOLO
2017-01-01

Abstract

In this paper we study some properties of the classical Arnoldi-based methods for solving infinite dimensional linear equations involving compact operators. These problems are intrinsically ill-posed since a compact operator does not admit a bounded inverse. We study the convergence properties and the ability of these algorithms to estimate the dominant singular values of the operator.
File in questo prodotto:
File Dimensione Formato  
sinum17.pdf

Accesso chiuso

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 427.27 kB
Formato Adobe PDF
427.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2905952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact