Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in the universe. Such particles are expected to emerge abundantly from the hot interior of stars. To test this prediction, the CERN Axion Solar Telescope (CAST) uses a 9 T refurbished Large Hadron Collider test magnet directed towards the Sun. In the strong magnetic field, solar axions can be converted to X-ray photons which can be recorded by X-ray detectors. In the 2013–2015 run, thanks to low-background detectors and a new X-ray telescope, the signal-to-noise ratio was increased by about a factor of three. Here, we report the best limit on the axion–photon coupling strength (0.66 × 10−10 GeV−1 at 95% confidence level) set by CAST, which now reaches similar levels to the most restrictive astrophysical bounds.

New CAST limit on the axion–photon interaction

CANTATORE, GIOVANNI;
2017-01-01

Abstract

Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in the universe. Such particles are expected to emerge abundantly from the hot interior of stars. To test this prediction, the CERN Axion Solar Telescope (CAST) uses a 9 T refurbished Large Hadron Collider test magnet directed towards the Sun. In the strong magnetic field, solar axions can be converted to X-ray photons which can be recorded by X-ray detectors. In the 2013–2015 run, thanks to low-background detectors and a new X-ray telescope, the signal-to-noise ratio was increased by about a factor of three. Here, we report the best limit on the axion–photon coupling strength (0.66 × 10−10 GeV−1 at 95% confidence level) set by CAST, which now reaches similar levels to the most restrictive astrophysical bounds.
2017
Pubblicato
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4109.html
File in questo prodotto:
File Dimensione Formato  
nphys4109.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 619.73 kB
Formato Adobe PDF
619.73 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2906697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 614
  • ???jsp.display-item.citation.isi??? 535
social impact