Graphene, a single layer of C atoms, has been recently proposed as a good candidate for post-silicon technology, providing a new platform that could allow improving electronic device performances, as described by the Moore’s Law. Chemical Vapour Deposition (CVD) is a suitable synthesis method for large-scale production of high quality graphene. This process exploits the catalytic activity of transition metal surfaces in dissociating hydrocarbon molecules. Among the possible catalysts, Ni is an appealing choice, due to the low price and the possibility to obtain graphene layers at temperature as low as 400°C. From a more fundamental point of view, graphene growth on the (111) surface of Ni represents a peculiar case of lattice-matched system, being a good model system for the study of the substrate effects on graphene properties. In this thesis, we study the growth process, the morphology and the electronic properties of graphene on Ni(111), by means of Scanning Tunneling Microscopy (STM), X-ray Photo-Emission Spectroscopy (XPS) and spectro-microscopy techniques. First, the different graphene structures are identified through a combined experimental and theoretical approach, revealing the coexistence of three epitaxial adsorption geometries and the possibility to obtain graphene domains that exhibits a rotation respect with the underlying substrate. Band structure mapping reveals specific changes in the electronic properties, depending on the degree of graphene orbital hybridization with the metal. Based on these findings, graphene growth is investigated by in-situ STM and XPS, clarifying the atomistic mechanisms under different experimental conditions and assessing the crucial roles played by surface carbide and C-contamination. In particular, we study the correlation between the CVD parameters, the growth process and the final graphene structures, being able to provide recipes for the synthesis of graphene layers with tailored morphologies. The atomic structure of graphene edges is studied, both during the growth, by means of high-speed STM measurements, and after cooling down to room temperature, addressing the importance of dangling bonds passivation. Then, employing the video-rate capability of our STM system, we identify the active sites for C attachment during growth, revealing the active role of Ni adatoms. Next, intrinsic defective structures are examined at the atomic scale by STM and ab-initio calculations, showing the presence of substitutional Ni adatoms trapped in the graphene matrix, as well as grain boundaries and lattice distortions. Finally, the growth and electronic properties of bi-layer graphene are investigated, revealing the possibility to exploit the lattice match between graphene and Ni(111) to limit the formation to two layers only.
Il grafene, un singolo strato di atomi di carbonio, è stato recentemente proposto come un buon candidato per la tecnologia post-silicio, fornendo una piattaforma che potrebbe consentire di migliorare le prestazioni di dispositivi elettronici, come descritto dalla legge di Moore. La deposizione da vapori chimici (CVD) è un metodo di sintesi adatto per la produzione su larga scala di grafene di alta qualità. Questo processo sfrutta l'attività catalitica delle superfici di metalli di transizione per dissociare molecole di idrocarburi. Tra i possibili catalizzatori, il nichel è particolarmente interessante, a causa del prezzo basso e della possibilità di ottenere strati di grafene a temperature a partire da 400°C. Da un punto di vista di ricerca fondamentale, la crescita di grafene sulla superficie (111) del nichel rappresenta un caso particolare di epitassia, offrendo un buon modello per lo studio degli effetti del substrato sulle proprietà del grafene. In questa tesi, si sono studiati il processo di crescita, la morfologia e le proprietà elettroniche del grafene su Ni(111), mediante microscopia a scansione ad effetto tunnel (STM), spettroscopia di foto-emissione da raggi X (XPS) e tecniche di spettro-microscopia. Inizialmente, le diverse strutture di grafene sono identificate attraverso un approccio combinato sperimentale e teorico, rivelando la coesistenza di tre geometrie di adsorbimento epitassiale e la possibilità di ottenere domini di grafene che presentano una rotazione rispetto al substrato. La mappatura della struttura a banda rivela cambiamenti specifici nelle proprietà elettroniche, a seconda del grado di ibridazione degli orbitali del grafene con il metallo. Sulla base di questi risultati, la crescita grafene è indagata tramite in situ STM e XPS, in modo da chiarire i meccanismi in diverse condizioni sperimentali e valutare il ruolo cruciale svolto dal carburo di superficie e dalla contaminazione di carbonio. In particolare, si è studiata la correlazione tra i parametri di CVD, il processo di crescita e le strutture di grafene finali, fornendo ricette per la sintesi di strati di grafene con morfologie specifiche. La struttura atomica dei bordi delle isole di grafene è studiata, sia durante la crescita, mediante misure STM ad alta velocità, e dopo raffreddamento a temperatura ambiente, mostrando l'importanza della passivazione dei legami dangling. Poi, utilizzando la capacità del nostro sistema STM di acquisire filmati a video-rate, abbiamo identificato i siti attivi per l’attaccamento di carbonio durante la crescita, rivelando il ruolo attivo degli adatomi di nichel. Successivamente, la struttura dei difetti intrinseci è esaminata su scala atomica tramite STM e calcoli ab-initio, mostrando la presenza di adatomi di nichel intrappolati nella matrice di grafene, così come i bordi di grano e le distorsioni reticolari. Infine, sono studiate la crescita e le proprietà elettroniche del grafene bi-strato, rivelando la possibilità di sfruttare l’epitassia tra grafene e Ni (111) per limitare la formazione a solo due strati.
In situ and in operando study of graphene growth and properties on metal surfaces / Patera, LAERTE LUIGI. - (2016 Mar 22).
In situ and in operando study of graphene growth and properties on metal surfaces
PATERA, LAERTE LUIGI
2016-03-22
Abstract
Graphene, a single layer of C atoms, has been recently proposed as a good candidate for post-silicon technology, providing a new platform that could allow improving electronic device performances, as described by the Moore’s Law. Chemical Vapour Deposition (CVD) is a suitable synthesis method for large-scale production of high quality graphene. This process exploits the catalytic activity of transition metal surfaces in dissociating hydrocarbon molecules. Among the possible catalysts, Ni is an appealing choice, due to the low price and the possibility to obtain graphene layers at temperature as low as 400°C. From a more fundamental point of view, graphene growth on the (111) surface of Ni represents a peculiar case of lattice-matched system, being a good model system for the study of the substrate effects on graphene properties. In this thesis, we study the growth process, the morphology and the electronic properties of graphene on Ni(111), by means of Scanning Tunneling Microscopy (STM), X-ray Photo-Emission Spectroscopy (XPS) and spectro-microscopy techniques. First, the different graphene structures are identified through a combined experimental and theoretical approach, revealing the coexistence of three epitaxial adsorption geometries and the possibility to obtain graphene domains that exhibits a rotation respect with the underlying substrate. Band structure mapping reveals specific changes in the electronic properties, depending on the degree of graphene orbital hybridization with the metal. Based on these findings, graphene growth is investigated by in-situ STM and XPS, clarifying the atomistic mechanisms under different experimental conditions and assessing the crucial roles played by surface carbide and C-contamination. In particular, we study the correlation between the CVD parameters, the growth process and the final graphene structures, being able to provide recipes for the synthesis of graphene layers with tailored morphologies. The atomic structure of graphene edges is studied, both during the growth, by means of high-speed STM measurements, and after cooling down to room temperature, addressing the importance of dangling bonds passivation. Then, employing the video-rate capability of our STM system, we identify the active sites for C attachment during growth, revealing the active role of Ni adatoms. Next, intrinsic defective structures are examined at the atomic scale by STM and ab-initio calculations, showing the presence of substitutional Ni adatoms trapped in the graphene matrix, as well as grain boundaries and lattice distortions. Finally, the growth and electronic properties of bi-layer graphene are investigated, revealing the possibility to exploit the lattice match between graphene and Ni(111) to limit the formation to two layers only.File | Dimensione | Formato | |
---|---|---|---|
Patera_PhD-compressed.pdf
Open Access dal 22/03/2017
Descrizione: tesi di dottorato
Dimensione
7.59 MB
Formato
Adobe PDF
|
7.59 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.