In the present thesis the intermolecular interactions and properties of some representative methyl xanthine systems, both adsorbed on surfaces and in aqueous environment, are analyzed. In particular, the mechanisms behind the aggregations of molecules are studied, using the tools of quantum mechanical electronic structure simulations together with state-of-the-art implicit solvent models. As a relevant remark, the aim of this work is pointed to the analysis and characterization of heterogeneous structures based on the aforementioned molecules and, for this reason, computational techniques coming from the condensed matter physics field are preferred over quantum chemistry approaches. The first part of the thesis is focused on the characterization of theophylline self-assembling systems on Au(111), while the second part analyzes caffeine molecules in water. Self-assembly of organic molecules is not a new topic in surface science, but theophylline is of particular interest and an extensive investigation of self-assembling structure is lacking. Unlike previous similar studies, the characteristics of the molecules and the high-definition Low-Temperature Scanning Tunnelling Microscopy (LT-STM) images allowed a very fruitful comparison between the computational and the experimental results. Concerning the second part, caffeine, a molecule very similar to those analyzed in the previous part, is an ideal test case for studying Molecularly Imprinted Polymers (MIPs), a class of biomolecules with catalytical and selectivity functions. Moreover this project allowed us to test a model to study molecules in a solvent environment, an interesting subject in quantum simulations: in particular, the Self-Consistent Continuum Solvent model (SCCS), recently implemented on the Quantum ESPRESSO suite of codes for electronic structure calculations, has been tested Finally, this study could represent a first step towards the development of heterogeneously supported MIPs, a very promising class of devices that require the knowledge of both quantum chemistry (for the involved biomolecules) and surface science (for the supports).

In questa tesi sono analizzate le interazioni intermolecolari e le proprietà di alcune sistemi composti da metil-xantine, sia assorbite su superfici che in ambiente acquoso. In particolare, sono studiati i meccanismi che sono alla base dell’aggregazione delle molecole, utilizzando gli strumenti delle simulazioni di struttura elettronica insieme a modelli di solvente implicito allo stato dell’arte. Lo scopo di questo lavoro è indirizzato all’analisi e alla caratterizzazione di strutture eterogenee basate sulle suddette molecole e, per questa ragione, sono preferite le tecniche computazionali provenienti dal campo della fisica della materia condensata agli approcci di chimica quantistica. La prima parte della tesi è dedicata alla caratterizzazione di un sistema auto-assemblante di teofillina su Au(111), mentre la seconda parte analizza molecole di caffeina in acqua. L’auto-assemblaggio di molecole organiche non è un argomento nuovo in fisica delle superfici, ma la teofillina risulta di particolare interesse e manca in letteratura uno studio estensivo di queste strutture. A differenza di studi precedenti, le caratteristiche delle molecole e i dettagli della microscopia a effetto tunnel a basse temperature (LT-STM) hanno permesso un confronto molto significativo tra i risultati computazionali e quelli sperimentali. Per quanto riguarda la seconda parte, la caffeina, molecola molto simile a quelle analizzate nella prima parte, è un soggetto ideale per studiare polimeri ad imprinting molecolare (MIP), una classe di biomolecole con funzioni catalizzatrici e di selezione. Inoltre, questo progetto ha permesso di testare un modello per lo studio di molecole in soluzione, un argomento molto interessante da affrontare nelle simulazioni quantistiche: in particolare, è stato testato su un sistema reale il modello Self-Consistent Continuum Solvent (SCCS) appena implementato nel codice per calcoli di struttura elettronica Quantum Espresso. Infine, questo studio può rappresentare un primo passo nello sviluppo di MIP su supporti eterogenei, una classe molto promettente di dispositivi che richiede conoscenze sia di chimica quantistica (per le biomolecole coinvolte) che di fisica delle superfici (per i supporti).

Self-assembled molecular structures on solid-state surfaces and in realistic environment: ab-initio modelling.

PIVIDORI, MARCO
2016-04-21

Abstract

In questa tesi sono analizzate le interazioni intermolecolari e le proprietà di alcune sistemi composti da metil-xantine, sia assorbite su superfici che in ambiente acquoso. In particolare, sono studiati i meccanismi che sono alla base dell’aggregazione delle molecole, utilizzando gli strumenti delle simulazioni di struttura elettronica insieme a modelli di solvente implicito allo stato dell’arte. Lo scopo di questo lavoro è indirizzato all’analisi e alla caratterizzazione di strutture eterogenee basate sulle suddette molecole e, per questa ragione, sono preferite le tecniche computazionali provenienti dal campo della fisica della materia condensata agli approcci di chimica quantistica. La prima parte della tesi è dedicata alla caratterizzazione di un sistema auto-assemblante di teofillina su Au(111), mentre la seconda parte analizza molecole di caffeina in acqua. L’auto-assemblaggio di molecole organiche non è un argomento nuovo in fisica delle superfici, ma la teofillina risulta di particolare interesse e manca in letteratura uno studio estensivo di queste strutture. A differenza di studi precedenti, le caratteristiche delle molecole e i dettagli della microscopia a effetto tunnel a basse temperature (LT-STM) hanno permesso un confronto molto significativo tra i risultati computazionali e quelli sperimentali. Per quanto riguarda la seconda parte, la caffeina, molecola molto simile a quelle analizzate nella prima parte, è un soggetto ideale per studiare polimeri ad imprinting molecolare (MIP), una classe di biomolecole con funzioni catalizzatrici e di selezione. Inoltre, questo progetto ha permesso di testare un modello per lo studio di molecole in soluzione, un argomento molto interessante da affrontare nelle simulazioni quantistiche: in particolare, è stato testato su un sistema reale il modello Self-Consistent Continuum Solvent (SCCS) appena implementato nel codice per calcoli di struttura elettronica Quantum Espresso. Infine, questo studio può rappresentare un primo passo nello sviluppo di MIP su supporti eterogenei, una classe molto promettente di dispositivi che richiede conoscenze sia di chimica quantistica (per le biomolecole coinvolte) che di fisica delle superfici (per i supporti).
PERESSI, MARIA
28
2014/2015
Settore FIS/01 - Fisica Sperimentale
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
compressed.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 9.63 MB
Formato Adobe PDF
9.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2908078
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact