We have studied the electronic structure of Eu3F4Bi2S4 using a combination of Eu L3-edge x-ray absorption spectroscopy (XAS) and space-resolved angle-resolved photoemission spectroscopy (ARPES). From the Eu L3-edge XAS, we have found that the Eu in this system is in mixed valence state with coexistence of Eu2+/Eu3+. The bulk charge doping was estimated to be ∼0.3 per Bi site in Eu3F4Bi2S4, which corresponds to the nominal x in a typical REO1−xFxBiS2 system (RE: rare-earth elements). From the space-resolved ARPES, we have ruled out the possibility of any microscale phase separation of Eu valence in the system. Using a microfocused beam we have observed the band structure as well as the Fermi surface that appeared similar to other compounds of this family with disconnected rectangular electronlike pockets around the X point. The Luttinger volume analysis gives the effective carrier to be 0.23 electrons per Bi site in Eu3F4Bi2S4, indicating that the system is likely to be in the underdoped region of its superconducting phase diagram.

Electronic structure of self-doped layered Eu3F4Bi2S4 material revealed by x-ray absorption spectroscopy and photoelectron spectromicroscopy

KANDYBA, VIKTOR;
2017-01-01

Abstract

We have studied the electronic structure of Eu3F4Bi2S4 using a combination of Eu L3-edge x-ray absorption spectroscopy (XAS) and space-resolved angle-resolved photoemission spectroscopy (ARPES). From the Eu L3-edge XAS, we have found that the Eu in this system is in mixed valence state with coexistence of Eu2+/Eu3+. The bulk charge doping was estimated to be ∼0.3 per Bi site in Eu3F4Bi2S4, which corresponds to the nominal x in a typical REO1−xFxBiS2 system (RE: rare-earth elements). From the space-resolved ARPES, we have ruled out the possibility of any microscale phase separation of Eu valence in the system. Using a microfocused beam we have observed the band structure as well as the Fermi surface that appeared similar to other compounds of this family with disconnected rectangular electronlike pockets around the X point. The Luttinger volume analysis gives the effective carrier to be 0.23 electrons per Bi site in Eu3F4Bi2S4, indicating that the system is likely to be in the underdoped region of its superconducting phase diagram.
2017
30-gen-2017
Pubblicato
https://link.aps.org/doi/10.1103/PhysRevB.95.035152
File in questo prodotto:
File Dimensione Formato  
PhysRevB.95.035152.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2910027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact