Tackling the climate change by reducing energy consumption is among the biggest, most urgent challenges society is facing and requires a continuous efficiency improvement of thermal systems. Appropriate design strategies, developed a priori and then experimentally validated according to suitable test protocols on a prototype, are needed in order to reach potential energy saving targets. These strategies can successfully be implemented in the food service sector, where cooking appliances, in particular, present many possibilities for improving energy savings. Therefore, a valuable design methodology should take into account not only steady state operating conditions but also the transient behaviours of the device, which must be described by means of specially developed theoretical dynamic models. The operating profile of an oven, for example, consists of a sequence of unsteady phases (cavity heating-up, food introduction and extraction, switching from one cooking mode to another) interspersed with steady cooking phases. The dynamic model presented in this paper defines the energy conservation equations of a professional oven, where a high temperature thermal source positioned inside its cavity produces thermal power radiated and modulated over time, according to a suitable control strategy. In particular, when the temperature in the cooking zone of the cavity has reached a specified set point, this is thermostatically controlled in time, depending on the cooking phase. The resulting equation system is then solved by means of numerical methods. With this code, it is possible to support the design phase of both the structure and the control strategy of the oven. It permits, for example, to get a general understanding of the best possible configurations and combinations of insulation materials for the cavity walls or, with reference to the control strategy, to simulate different cooking procedures, with the aim of optimizing the operating sequence of the oven, reaching the maximum energy saving without reducing the cooking quality. The code, validated by comparison with a set of experimental data obtained with a current production model, will be applied in the design phase of a new line of high efficiency professional ovens.

Transient model of a Professional Oven

BURLON, FABIO;TIBERI, EMIDIO;MICHELI, DIEGO;
2017-01-01

Abstract

Tackling the climate change by reducing energy consumption is among the biggest, most urgent challenges society is facing and requires a continuous efficiency improvement of thermal systems. Appropriate design strategies, developed a priori and then experimentally validated according to suitable test protocols on a prototype, are needed in order to reach potential energy saving targets. These strategies can successfully be implemented in the food service sector, where cooking appliances, in particular, present many possibilities for improving energy savings. Therefore, a valuable design methodology should take into account not only steady state operating conditions but also the transient behaviours of the device, which must be described by means of specially developed theoretical dynamic models. The operating profile of an oven, for example, consists of a sequence of unsteady phases (cavity heating-up, food introduction and extraction, switching from one cooking mode to another) interspersed with steady cooking phases. The dynamic model presented in this paper defines the energy conservation equations of a professional oven, where a high temperature thermal source positioned inside its cavity produces thermal power radiated and modulated over time, according to a suitable control strategy. In particular, when the temperature in the cooking zone of the cavity has reached a specified set point, this is thermostatically controlled in time, depending on the cooking phase. The resulting equation system is then solved by means of numerical methods. With this code, it is possible to support the design phase of both the structure and the control strategy of the oven. It permits, for example, to get a general understanding of the best possible configurations and combinations of insulation materials for the cavity walls or, with reference to the control strategy, to simulate different cooking procedures, with the aim of optimizing the operating sequence of the oven, reaching the maximum energy saving without reducing the cooking quality. The code, validated by comparison with a set of experimental data obtained with a current production model, will be applied in the design phase of a new line of high efficiency professional ovens.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1876610217335191-main.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 902.66 kB
Formato Adobe PDF
902.66 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2911056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact