Vertebrate telomeres are the protective ends of linear chromosomes that consist of TTAGGG tandem repeats. The conventional DNA replication machinery is unable to fully replicate chromosome ends, thus telomeres shorten with every cell division, finally leading to telomere dysfunction and cellular senescence. The escape from cellular senescence can be achieved in tumor cells by two different mechanisms: the reactivation of the reverse transcriptase telomerase in 90% of human cancers or the alternative lengthening of telomeres (ALT) that relies on the homologous recombination. The minimal catalytic core of telomerase consists of the telomerase RNA component (hTR) and the reverse transcriptase subunit (hTERT). Telomerase can replenish telomere repeats, thus antagonizing the end replication problem and its expression is tightly regulated at transcriptional and post-translational level. However, the role of non-coding RNAs in telomere and telomerase regulation is poorly understood. The goal of my PhD thesis was to explore new non-coding RNA related pathways that regulate telomerase and telomere homeostasis in cancer cells. In particular, my work aimed to i) identify novel miRNAs that can regulate telomerase expression in breast cancer cells and demonstrate clinical relevance for these miRNAs (project 1) and ii) better elucidate the role of the post-transcriptional maturation of the non-coding RNA hTR by the RNA methyltransferase TGS1 in telomere homeostasiss (project 2). Project 1: Silencing of miR-296 and miR-512 ensures hTERT dependent apoptosis protection and telomere maintenance in basal-type breast cancer cells We performed a high-throughput luciferase reporter screening in HeLa cells and identified a panel of miRNAs that target the 3’UTR of hTERT. Among these miRNAs, we found that miR-296-5p and miR-512-5p can induce hTERT mRNA degradation, thus reducing telomerase activity. Clinical data revealed that miR-296-5p and miR-512-5p are downregulated in breast cancer tissues. Importantly, we found that increased hTERT and miR-296-5p or miR-512-5p target genes expression is linked to poor survival in basal breast cancer patients, thus highlighting the clinical relevance of miR-296-5p and miR-512-5p in this cancer subtype. We showed that miR-296-5p and miR-512-5p can regulate cell proliferation and telomere lengthening maintenance in basal breast cancer cells. We further found that epigenetic silencing of miR-296 and miR-512 genes in a basal breast cancer cells, thus ensuring hTERT expression. These evidences suggest that drugs that impinge on miR-296-5p or miR-512-5p expression might be a promising strategy to control telomere homeostasis in human breast cancer. Project 2: Regulation of telomere homeostasis by the RNA methyltransferase TGS1 The enzymatic activity of telomerase depends on a precise processing of the hTR and proper assembly with hTERT to form the telomerase RNP complex. The ncRNA component of telomerase hTR differs from other RNA Polymerase II transcripts by exhibiting a 2,2,7-trimethylguanosine cap at its 5’ end, generated by the RNA-methyltransferase TGS1. We found that loss of the trimethylguanosine cap of hTR results in an impairment of normal telomerase dependent telomere maintenance in cancer cells. This process is paralleled by the activation of features of the ALT pathwway. This evidence suggests a redirection from telomerase dependent to ALT maintenance in the absence of trimethylation. Our data suggest that the 2,2,7-trimethylguanosine cap of hTR is important for telomerase based elongation of telomeres and that TGS1 may act as a switch between telomerase and recombination based telomere maintenance by imposing a trimethylguanosine cap on hTR. Altogether, these evidences demonstrate that non-coding RNAs might represent new regulators of telomerase function, thus impacting on telomere homeostasis in human cancer.
I telomeri sono le regioni terminali dei cromosomi ed hanno il ruolo fondamentale di proteggere l’estremità del cromosoma stesso. Per ragioni intrinseche al suo meccanismo di duplicazione, il DNA telomerico non viene completamente replicato, provocando un accorciamento delle estremità cromosomiche ad ogni ciclo di replicazione, che causa un blocco della proliferazione cellulare noto come senescenza. Per controbilanciare questo fenomeno, le cellule tumorali possono riattivare la telomerasi, un enzima che sintetizza nuove ripetizioni telomeriche, o attivare meccanismi alternativi che si basano sulla ricombinazione omologa (ALT). La telomerasi è una ribonucleoproteina costituita da due componenti essenziali: una molecola di RNA denominata hTR ed una subunità con attività enzimatica nota come hTERT. Nonostante sia noto che l’espressione della telomerasi è altamente regolata sia ad un livello trascrizionale che post-traduzionale, il ruolo degli RNA non codificanti in tale regolazione è stato scarsamente spiegato. L’obiettivo della mia tesi di Dottorato è stato scoprire nuove pathway regolate da RNA non codificanti che potessero avere un ruolo nella regolazione della telomerasi in cellule tumorali. In particolare, il mio lavoro ha avuto come obiettivo i) l’identificazione di microRNAs coinvolti nella regolazione dell’espressione della telomerasi nel tumore della mammella (progetto 1) e ii) l’elucidazione del ruolo che il processo maturativo di hTR ad opera dell’RNA metiltransferasi TGS1 riveste nel mantenimento dell’omeostasi telomerica (progetto 2). Progetto 1: Il silenziameno dei miR-296-5p e miR-512-5p assicura una protezione dall’apoptosi hTERT-dipendente e il mantenimento dell’omeostasi telomerica in cellule di tumore basale della mammella Utilizzando come modello il tumore della mammella, è stato possibile identificare numerosi miRNAs che hanno come bersaglio specifico il 3’ UTR di hTERT. Da una successiva analisi bioinformatica è emerso che, tra i miRNAs precedentemente identificati, i livelli dei miR-296-5p e miR-512-5p sono particolarmente bassi nei tumori della mammella e che, conseguentemente, l’aumentato livello di hTERT è strettamente correlato ad una prognosi peggiore. Con il nostro lavoro, abbiamo mostrato che i miR-296-5p e miR-512-5p sono in grado di regolare la proliferazione ed il mantenimento della lunghezza telomerica. Inoltre, dal momento che è stato possibile evidenziare un importante ruolo della regolazione epigenetica nel controllo dell’espressione dei suddetti miRNAs, è possibile concludere che l’utilizzo di composti che regolano l’espressione dei miR-296-5p e miR-512-5p potrebbe rappresentare una promettente strategia per controllare l’omeostasi telomerica nel tumore della mammella. Progetto 2: Regolazione dell’omeostasi telomerica ad opera della RNA metiltransferasi TGS1 hTR è un RNA non codificante trascritto dalla RNA polimerasi II e caratterizzato dalla presenza di un cap al 5’ di 2,2,7-trimetilguanosina, la cui completa maturazione avviene ad opera di TGS1. Il nostro lavoro ha mostrato che la riduzione della trimetilazione di hTR provoca un importante deficit dell’attività della telomerasi nell’allungamento dei telomeri, la cui lunghezza viene invece mantenuta tramite meccanismi ALT. Questi dati suggeriscono che, l’innapropriata maturazione di hTR possa provocare una “riprogrammazione” del meccanismo di mantenimento della lunghezza dei telomeri. In particolare, con le evidenze emerse dal nostro lavoro, suggeriamo che TGS1 possa indirizzare la cellula tumorale verso la scelta del meccanismo di mantenimento della lunghezza telomerica. In conclusione, il mio lavoro di Dottorato dimostra che, a diversi livelli, gli RNA non codificanti hanno un ruolo cruciale nella regolazione della funzione della telomerasi, provocando un importante impatto sul mantenimento dell’omeostasi telomerica in differenti tipi di tumore umano.
Telomerase regulation by non-coding RNAs / Buemi, Valentina. - (2017 Nov 06).
Telomerase regulation by non-coding RNAs
BUEMI, VALENTINA
2017-11-06
Abstract
Vertebrate telomeres are the protective ends of linear chromosomes that consist of TTAGGG tandem repeats. The conventional DNA replication machinery is unable to fully replicate chromosome ends, thus telomeres shorten with every cell division, finally leading to telomere dysfunction and cellular senescence. The escape from cellular senescence can be achieved in tumor cells by two different mechanisms: the reactivation of the reverse transcriptase telomerase in 90% of human cancers or the alternative lengthening of telomeres (ALT) that relies on the homologous recombination. The minimal catalytic core of telomerase consists of the telomerase RNA component (hTR) and the reverse transcriptase subunit (hTERT). Telomerase can replenish telomere repeats, thus antagonizing the end replication problem and its expression is tightly regulated at transcriptional and post-translational level. However, the role of non-coding RNAs in telomere and telomerase regulation is poorly understood. The goal of my PhD thesis was to explore new non-coding RNA related pathways that regulate telomerase and telomere homeostasis in cancer cells. In particular, my work aimed to i) identify novel miRNAs that can regulate telomerase expression in breast cancer cells and demonstrate clinical relevance for these miRNAs (project 1) and ii) better elucidate the role of the post-transcriptional maturation of the non-coding RNA hTR by the RNA methyltransferase TGS1 in telomere homeostasiss (project 2). Project 1: Silencing of miR-296 and miR-512 ensures hTERT dependent apoptosis protection and telomere maintenance in basal-type breast cancer cells We performed a high-throughput luciferase reporter screening in HeLa cells and identified a panel of miRNAs that target the 3’UTR of hTERT. Among these miRNAs, we found that miR-296-5p and miR-512-5p can induce hTERT mRNA degradation, thus reducing telomerase activity. Clinical data revealed that miR-296-5p and miR-512-5p are downregulated in breast cancer tissues. Importantly, we found that increased hTERT and miR-296-5p or miR-512-5p target genes expression is linked to poor survival in basal breast cancer patients, thus highlighting the clinical relevance of miR-296-5p and miR-512-5p in this cancer subtype. We showed that miR-296-5p and miR-512-5p can regulate cell proliferation and telomere lengthening maintenance in basal breast cancer cells. We further found that epigenetic silencing of miR-296 and miR-512 genes in a basal breast cancer cells, thus ensuring hTERT expression. These evidences suggest that drugs that impinge on miR-296-5p or miR-512-5p expression might be a promising strategy to control telomere homeostasis in human breast cancer. Project 2: Regulation of telomere homeostasis by the RNA methyltransferase TGS1 The enzymatic activity of telomerase depends on a precise processing of the hTR and proper assembly with hTERT to form the telomerase RNP complex. The ncRNA component of telomerase hTR differs from other RNA Polymerase II transcripts by exhibiting a 2,2,7-trimethylguanosine cap at its 5’ end, generated by the RNA-methyltransferase TGS1. We found that loss of the trimethylguanosine cap of hTR results in an impairment of normal telomerase dependent telomere maintenance in cancer cells. This process is paralleled by the activation of features of the ALT pathwway. This evidence suggests a redirection from telomerase dependent to ALT maintenance in the absence of trimethylation. Our data suggest that the 2,2,7-trimethylguanosine cap of hTR is important for telomerase based elongation of telomeres and that TGS1 may act as a switch between telomerase and recombination based telomere maintenance by imposing a trimethylguanosine cap on hTR. Altogether, these evidences demonstrate that non-coding RNAs might represent new regulators of telomerase function, thus impacting on telomere homeostasis in human cancer.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis Valentina Buemi.pdf
Open Access dal 06/11/2020
Descrizione: tesi di dottorato
Dimensione
4.76 MB
Formato
Adobe PDF
|
4.76 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.