We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body $\Omega\subset\mathbb{R}^{n}$ when the so-called Neumann-to-Dirichlet map is locally given on a non-empty curved portion Σ of the boundary $\partial\Omega$ . We prove that anisotropic conductivities that are a priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the interior from the knowledge of the local Neumann-to-Dirichlet map.
Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities
Alessandrini, Giovanni
;GABURRO, ROMINA
2017-01-01
Abstract
We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body $\Omega\subset\mathbb{R}^{n}$ when the so-called Neumann-to-Dirichlet map is locally given on a non-empty curved portion Σ of the boundary $\partial\Omega$ . We prove that anisotropic conductivities that are a priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the interior from the knowledge of the local Neumann-to-Dirichlet map.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
94_Inverse_Problems_33_125013.pdf
Accesso chiuso
Descrizione: articolo completo
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.