We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body $\Omega\subset\mathbb{R}^{n}$ when the so-called Neumann-to-Dirichlet map is locally given on a non-empty curved portion Σ of the boundary $\partial\Omega$ . We prove that anisotropic conductivities that are a priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the interior from the knowledge of the local Neumann-to-Dirichlet map.

Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities

Alessandrini, Giovanni
;
GABURRO, ROMINA
2017-01-01

Abstract

We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body $\Omega\subset\mathbb{R}^{n}$ when the so-called Neumann-to-Dirichlet map is locally given on a non-empty curved portion Σ of the boundary $\partial\Omega$ . We prove that anisotropic conductivities that are a priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the interior from the knowledge of the local Neumann-to-Dirichlet map.
2017
22-nov-2017
Pubblicato
File in questo prodotto:
File Dimensione Formato  
94_Inverse_Problems_33_125013.pdf

Accesso chiuso

Descrizione: articolo completo
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2912521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 26
social impact