Micro Combined Heat and Power (microCHP) systems based on High Temperature Polymer Electrolyte Membrane (HTPEM) fuel cells is a promising technology allowing to produce electricity and heat with very high efficiency and low emissions also for small power systems. Polybenzimidazole (PBI) based HTPEM fuel cells, thanks to their high CO tolerance, allow the use of fuels other than pure hydrogen by means of a simplified fuel processing unit. However, their relatively low performance and performance degradation rate are still issues to be overcome in order to allow commercialization. In this work, an energy simulation model developed by the authors in a previous research work, has been improved taking into account the degradation of the fuel cell stack in order to assess the performance of the system over long period of operation. The fuel cells performance degradation over time has been implemented on the basis of experimental data obtained by the authors and on data found in literature. The performance of the system has been studied in different configurations that include the introduction of a lithium battery storage in addition to the fuel cell stack. System parameters, such as electrical and thermal energy production, import/export of electricity and primary energy savings have been calculated and compared for different system configurations. Results show that battery integration can improve system performance and that the effect of fuel cell degradation reduces the electricity production. The effect on overall efficiency can be mitigated if heat is recovered.

Performance analysis of a micro CHP system based on high temperature PEM fuel cells subjected to degradation

TACCANI, RODOLFO
Writing – Original Draft Preparation
;
CHINESE, TANCREDI
Writing – Original Draft Preparation
;
ZULIANI, NICOLA
Membro del Collaboration Group
2017-01-01

Abstract

Micro Combined Heat and Power (microCHP) systems based on High Temperature Polymer Electrolyte Membrane (HTPEM) fuel cells is a promising technology allowing to produce electricity and heat with very high efficiency and low emissions also for small power systems. Polybenzimidazole (PBI) based HTPEM fuel cells, thanks to their high CO tolerance, allow the use of fuels other than pure hydrogen by means of a simplified fuel processing unit. However, their relatively low performance and performance degradation rate are still issues to be overcome in order to allow commercialization. In this work, an energy simulation model developed by the authors in a previous research work, has been improved taking into account the degradation of the fuel cell stack in order to assess the performance of the system over long period of operation. The fuel cells performance degradation over time has been implemented on the basis of experimental data obtained by the authors and on data found in literature. The performance of the system has been studied in different configurations that include the introduction of a lithium battery storage in addition to the fuel cell stack. System parameters, such as electrical and thermal energy production, import/export of electricity and primary energy savings have been calculated and compared for different system configurations. Results show that battery integration can improve system performance and that the effect of fuel cell degradation reduces the electricity production. The effect on overall efficiency can be mitigated if heat is recovered.
2017
Pubblicato
https://www.sciencedirect.com/science/article/pii/S1876610217337013
File in questo prodotto:
File Dimensione Formato  
Performance analysis micro CHP.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 580.38 kB
Formato Adobe PDF
580.38 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2913177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact