We study congruences of lines Xω defined by a sufficiently general choice of an alternating 3-form ω in n+1 dimensions, as Fano manifolds of index 3 and dimension n−1. These congruences include the G2-variety for n=6 and the variety of reductions of projected ℙ2×ℙ2 for n=7. We compute the degree of Xω as the n-th Fine number and study the Hilbert scheme of these congruences proving that the choice of ω bijectively corresponds to Xω except when n=5. The fundamental locus of the congruence is also studied together with its singular locus: these varieties include the Coble cubic for n=8 and the Peskine variety for n=9. The residual congruence Y of Xω with respect to a general linear congruence containing Xω is analysed in terms of the quadrics containing the linear span of Xω. We prove that Y is Cohen-Macaulay but non-Gorenstein in codimension 4. We also examine the fundamental locus G of Y of which we determine the singularities and the irreducible components.
Titolo: | Fano congruences of index 3 and alternating 3-forms | |
Autori: | ||
Data di pubblicazione: | 2017 | |
Stato di pubblicazione: | Pubblicato | |
Rivista: | ||
Abstract: | We study congruences of lines Xω defined by a sufficiently general choice of an alternating 3-form ω in n+1 dimensions, as Fano manifolds of index 3 and dimension n−1. These congruences include the G2-variety for n=6 and the variety of reductions of projected ℙ2×ℙ2 for n=7. We compute the degree of Xω as the n-th Fine number and study the Hilbert scheme of these congruences proving that the choice of ω bijectively corresponds to Xω except when n=5. The fundamental locus of the congruence is also studied together with its singular locus: these varieties include the Coble cubic for n=8 and the Peskine variety for n=9. The residual congruence Y of Xω with respect to a general linear congruence containing Xω is analysed in terms of the quadrics containing the linear span of Xω. We prove that Y is Cohen-Macaulay but non-Gorenstein in codimension 4. We also examine the fundamental locus G of Y of which we determine the singularities and the irreducible components. | |
Handle: | http://hdl.handle.net/11368/2914428 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.5802/aif.3131 | |
URL: | http://aif.cedram.org/cedram-bin/article/AIF_2017__67_5_2099_0.pdf | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
AIF_2017__67_5_2099_0.pdf | Articolo principale | Documento in Versione Editoriale | ![]() | Open Access Visualizza/Apri |