The reaction of cis-blocked, square-planar M-II complexes with tetratopic N-donor ligands is known to give metallasupramolecular assemblies of the formula M2nLn. These assemblies typically adopt barrel-like structures, with the ligands paneling the sides of the barrels. However, alternative structures are possible, as demonstrated by the recent discovery of a Pt8L4 cage with unusual gyrobifastigium-like geometry. To date, the factors that govern the assembly of (M2nLn)-L-II complexes are not well understood. Herein, we provide a geometric analysis of M2nLn complexes, and we discuss how size and geometry of the ligand is expected to influence the self-assembly process. The theoretical analysis is complemented by experimental studies using different cis-blocked Pt-II complexes and metalloligands with four divergent pyridyl groups. Mononuclear metalloligands gave mainly assemblies of type Pt8L4, which adopt barrel- or gyrobifastigium-like structures. Larger assemblies can also form, as evidenced by the crystallographic characterization of a Pt10L5 complex and a Pt16L8 complex. The former adopts a pentagonal barrel structure, whereas the latter displays a barrel structure with a distorted square orthobicupola geometry. The Pt16L8 complex has a molecular weight of more than 23 kDa and a diameter of 4.5 nm, making it the largest, structurally characterized M2nLn complex described to date. A dinuclear metalloligand was employed for the targeted synthesis of pentagonal Pt10L5 barrels, which are formed in nearly quantitative yields.
Titolo: | The Intricate Structural Chemistry of MII2nLn-Type Assemblies |
Autori: | |
Data di pubblicazione: | 2017 |
Data ahead of print: | 12-giu-2017 |
Stato di pubblicazione: | Pubblicato |
Rivista: | |
Abstract: | The reaction of cis-blocked, square-planar M-II complexes with tetratopic N-donor ligands is known to give metallasupramolecular assemblies of the formula M2nLn. These assemblies typically adopt barrel-like structures, with the ligands paneling the sides of the barrels. However, alternative structures are possible, as demonstrated by the recent discovery of a Pt8L4 cage with unusual gyrobifastigium-like geometry. To date, the factors that govern the assembly of (M2nLn)-L-II complexes are not well understood. Herein, we provide a geometric analysis of M2nLn complexes, and we discuss how size and geometry of the ligand is expected to influence the self-assembly process. The theoretical analysis is complemented by experimental studies using different cis-blocked Pt-II complexes and metalloligands with four divergent pyridyl groups. Mononuclear metalloligands gave mainly assemblies of type Pt8L4, which adopt barrel- or gyrobifastigium-like structures. Larger assemblies can also form, as evidenced by the crystallographic characterization of a Pt10L5 complex and a Pt16L8 complex. The former adopts a pentagonal barrel structure, whereas the latter displays a barrel structure with a distorted square orthobicupola geometry. The Pt16L8 complex has a molecular weight of more than 23 kDa and a diameter of 4.5 nm, making it the largest, structurally characterized M2nLn complex described to date. A dinuclear metalloligand was employed for the targeted synthesis of pentagonal Pt10L5 barrels, which are formed in nearly quantitative yields. |
Handle: | http://hdl.handle.net/11368/2914558 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1021/jacs.7b04861 |
URL: | http://pubs.acs.org/doi/10.1021/jacs.7b04861 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
jacs.7b04861.pdf | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |