The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. For quarks, it was studied in previous measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it was found to be non-zero. In this letter the evaluation of the Sivers asymmetry for gluons is presented. The contribution of the photon–gluon fusion subprocess is enhanced by requiring two high transverse-momentum hadrons. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon–gluon fusion, QCD Compton scattering and the leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simultaneously extracted using the LEPTO event generator and a neural network approach. The method is applied to samples of events containing at least two hadrons with large transverse momentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely polarised deuterons and protons. With a significance of about two standard deviations, a negative value is obtained for the gluon Sivers asymmetry. The result of a similar analysis for a Collins-like asymmetry for gluons is consistent with zero.

First measurement of the Sivers asymmetry for gluons using SIDIS data

Birsa, R.;Bradamante, F.;Bressan, A.;Chatterjee, C.;Dalla Torre, S.;Dasgupta, S. S.;Dasgupta, S.;Duic, V.;Kerbizi, A.;Levorato, S.;Makke, N.;Martin, A.;Sbrizzai, G.;Schiavon, P.;Szabelski, A.;Takekawa, S.;Tessaro, S.;Tessarotto, F.;
2017-01-01

Abstract

The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. For quarks, it was studied in previous measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it was found to be non-zero. In this letter the evaluation of the Sivers asymmetry for gluons is presented. The contribution of the photon–gluon fusion subprocess is enhanced by requiring two high transverse-momentum hadrons. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon–gluon fusion, QCD Compton scattering and the leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simultaneously extracted using the LEPTO event generator and a neural network approach. The method is applied to samples of events containing at least two hadrons with large transverse momentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely polarised deuterons and protons. With a significance of about two standard deviations, a negative value is obtained for the gluon Sivers asymmetry. The result of a similar analysis for a Collins-like asymmetry for gluons is consistent with zero.
2017
Pubblicato
http://www.sciencedirect.com/science/article/pii/S0370269317305749
File in questo prodotto:
File Dimensione Formato  
2017_plb722_854.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2914858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact