We present the first ever measurements of femtoscopic correlations between the K0 and K± particles. The analysis was performed on the data from Pb–Pb collisions at √sNN = 2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for K0S K− are found to be equal within the experimental uncertainties to those for K0 K+ . Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquark.
Measuring KS0-K± interactions using Pb-Pb collisions at √sNN = 2.76 TeV
Camerini, P.;Fragiacomo, E.;Lea, R.;Luparello, G.;Margagliotti, G. V.;Piano, S.;Rui, R.;Suljic, M.;Zaccolo, V.;
2017-01-01
Abstract
We present the first ever measurements of femtoscopic correlations between the K0 and K± particles. The analysis was performed on the data from Pb–Pb collisions at √sNN = 2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for K0S K− are found to be equal within the experimental uncertainties to those for K0 K+ . Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquark.File | Dimensione | Formato | |
---|---|---|---|
PLB_774(2017)64-77.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
969.43 kB
Formato
Adobe PDF
|
969.43 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.