Fractional-slot concentrated windings (FSCW) are becoming more and more popular in the design of permanent magnet electric machines. A well-known drawback of their adoption is the occurrence of large magneto-motive force (MMF) harmonics, which produce eddy-current losses in rotor permanent magnets. The use of a multi-layer design, with coils of different phases wound around the same tooth, is a possible countermeasure to mitigate the problem. In this paper, a new general systematic methodology is proposed to optimize the multilayer FSCW design in the form of a multi-objective quadratic programming problem. The maximization of the MMF fundamental and the minimization of total rotor losses are taken as properly weighed objective functions. Constraints are imposed to guarantee the physical feasibility and the electric symmetry of the winding. An application example to a 9-slot 8-pole machine is presented, together with extensive validations by comparison with finite element analysis (FEA) simulations, to prove the effectiveness of the proposed technique.

A Quadratic-Programming Approach to the Design Optimization of Fractional-Slot Concentrated Windings for Surface Permanent-Magnet Machines

Tessarolo, A.
2018-01-01

Abstract

Fractional-slot concentrated windings (FSCW) are becoming more and more popular in the design of permanent magnet electric machines. A well-known drawback of their adoption is the occurrence of large magneto-motive force (MMF) harmonics, which produce eddy-current losses in rotor permanent magnets. The use of a multi-layer design, with coils of different phases wound around the same tooth, is a possible countermeasure to mitigate the problem. In this paper, a new general systematic methodology is proposed to optimize the multilayer FSCW design in the form of a multi-objective quadratic programming problem. The maximization of the MMF fundamental and the minimization of total rotor losses are taken as properly weighed objective functions. Constraints are imposed to guarantee the physical feasibility and the electric symmetry of the winding. An application example to a 9-slot 8-pole machine is presented, together with extensive validations by comparison with finite element analysis (FEA) simulations, to prove the effectiveness of the proposed technique.
2018
12-set-2017
Pubblicato
File in questo prodotto:
File Dimensione Formato  
publisher version.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 884.14 kB
Formato Adobe PDF
884.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2917065_publisher version-PostPrint.pdf

accesso aperto

Descrizione: PostPrint VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2917065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact