Azaspiracids (AZAs) are marine algal toxins that can be accumulated by edible shellfish to cause a foodborne gastrointestinal poisoning in humans. In the European Union, only AZA1, -2 and -3 are currently regulated and their concentration in shellfish is determined through their toxic equivalency factors (TEFs) derived from the intraperitoneal lethal potency in mice. Nevertheless, considering the potential human exposure by oral route, AZAs TEFs should be calculated by comparative oral toxicity data. Thus, the acute oral toxicity of AZA1, -2 and -3 was investigated in female CD-1 mice treated with different doses (AZA1: 135-1100 mu g/kg; AZA2 and AZA3: 300-1100 mu g/kg) and sacrificed after 24 h or 14 days. TEFs derived from the median lethal doses (LD50) were 1.0, 0.7 and 0.5, respectively for AZA1, -2 and -3. In fact, after 24 h from gavage administration, LD(50)s were 443 mu g/kg (AZA1; 95% CL: 350-561 mu g/kg), 626 mu g/kg (AZA2; 95% CL: 430-911 mu g/kg) and 875 mu g/kg (AZA3; 95% CL: 757-1010 mu g/kg). Mice dead more than 5 h after the treatment or those sacrificed after 24 h (doses: = 175 mu g AZA1/kg, >= 500 mu g AZA2/kg and >= 600 mu g AZA3/kg) showed enlarged pale liver, while increased serum markers of liver alteration were recorded even at the lowest doses. Blood chemistry revealed significantly increased serum levels of K+ ions (>= 500 mg/kg), whereas light microscopy showed tissue changes in the gastrointestinal tract, liver and spleen. No lethality, macroscopic, tissue or haematological changes were recorded two weeks post exposure, indicating reversible toxic effects. LC-MS/MS analysis of the main organs showed a dose-dependency in gastrointestinal absorption of these toxins: at 24 h, the highest levels were detected in the stomach and, in descending order, in the intestinal content, liver, small intestine, kidneys, lungs, large intestine, heart as well as detectable traces in the brain. After 14 days, AZA1 and AZA2 were still detectable in almost all the organs and intestinal content.

Toxic equivalency factors (TEFs) after acute oral exposure of azaspiracid 1,-2 and-3 in mice

Pelin, M.;Tubaro, A.;Sosa, S.
2018-01-01

Abstract

Azaspiracids (AZAs) are marine algal toxins that can be accumulated by edible shellfish to cause a foodborne gastrointestinal poisoning in humans. In the European Union, only AZA1, -2 and -3 are currently regulated and their concentration in shellfish is determined through their toxic equivalency factors (TEFs) derived from the intraperitoneal lethal potency in mice. Nevertheless, considering the potential human exposure by oral route, AZAs TEFs should be calculated by comparative oral toxicity data. Thus, the acute oral toxicity of AZA1, -2 and -3 was investigated in female CD-1 mice treated with different doses (AZA1: 135-1100 mu g/kg; AZA2 and AZA3: 300-1100 mu g/kg) and sacrificed after 24 h or 14 days. TEFs derived from the median lethal doses (LD50) were 1.0, 0.7 and 0.5, respectively for AZA1, -2 and -3. In fact, after 24 h from gavage administration, LD(50)s were 443 mu g/kg (AZA1; 95% CL: 350-561 mu g/kg), 626 mu g/kg (AZA2; 95% CL: 430-911 mu g/kg) and 875 mu g/kg (AZA3; 95% CL: 757-1010 mu g/kg). Mice dead more than 5 h after the treatment or those sacrificed after 24 h (doses: = 175 mu g AZA1/kg, >= 500 mu g AZA2/kg and >= 600 mu g AZA3/kg) showed enlarged pale liver, while increased serum markers of liver alteration were recorded even at the lowest doses. Blood chemistry revealed significantly increased serum levels of K+ ions (>= 500 mg/kg), whereas light microscopy showed tissue changes in the gastrointestinal tract, liver and spleen. No lethality, macroscopic, tissue or haematological changes were recorded two weeks post exposure, indicating reversible toxic effects. LC-MS/MS analysis of the main organs showed a dose-dependency in gastrointestinal absorption of these toxins: at 24 h, the highest levels were detected in the stomach and, in descending order, in the intestinal content, liver, small intestine, kidneys, lungs, large intestine, heart as well as detectable traces in the brain. After 14 days, AZA1 and AZA2 were still detectable in almost all the organs and intestinal content.
2018
Pubblicato
https://www.sciencedirect.com/science/article/pii/S037842741731439X
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S037842741731439X-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2917123_1-s2.0-S037842741731439X-main-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2917123
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact