Cavitating phenomena, which may occur in many industrial systems, can be modelled using several approaches. In this study a homogeneous multiphase model, used in combination with three previously calibrated mass transfer models, is evaluated for the numerical prediction of cavitating flow around a marine propeller and a Kaplan turbine runner. The simulations are performed using a commercial computational fluid dynamics (CFD) solver and the turbulence effects are modelled using, alternatively, the Reynolds averaged Navier Stokes (RANS) and scale adaptive simulation (SAS) approaches. The numerical results are compared with available experimental data. In the case of the propeller the thrust coefficient and the sketches of cavitation patterns are considered. In the case of the turbine the efficiency and draft tube losses, along with the cavitation pattern sketches, are compared. From the overall results it seems that, for the considered systems, the three different mass transfer models can guarantee similar levels of accuracy for the performance prediction. For a very detailed investigation of the fluid field, slight differences in the predicted shapes of the cavitation patterns can be observed. In addition, in the case of the propeller, the SAS simulation seems to guarantee a more accurate resolution of the cavitating tip vortex flow, while for the turbine, SAS simulations can significantly improve the predictions of the draft tube turbulent flow.

Numerical Predictions of Cavitating Flow Around a Marine Propeller and Kaplan Turbine Runner with Calibrated Cavitation Models

Mitja Morgut
;
Enrico Nobile;Giorgio Contento
2018-01-01

Abstract

Cavitating phenomena, which may occur in many industrial systems, can be modelled using several approaches. In this study a homogeneous multiphase model, used in combination with three previously calibrated mass transfer models, is evaluated for the numerical prediction of cavitating flow around a marine propeller and a Kaplan turbine runner. The simulations are performed using a commercial computational fluid dynamics (CFD) solver and the turbulence effects are modelled using, alternatively, the Reynolds averaged Navier Stokes (RANS) and scale adaptive simulation (SAS) approaches. The numerical results are compared with available experimental data. In the case of the propeller the thrust coefficient and the sketches of cavitation patterns are considered. In the case of the turbine the efficiency and draft tube losses, along with the cavitation pattern sketches, are compared. From the overall results it seems that, for the considered systems, the three different mass transfer models can guarantee similar levels of accuracy for the performance prediction. For a very detailed investigation of the fluid field, slight differences in the predicted shapes of the cavitation patterns can be observed. In addition, in the case of the propeller, the SAS simulation seems to guarantee a more accurate resolution of the cavitating tip vortex flow, while for the turbine, SAS simulations can significantly improve the predictions of the draft tube turbulent flow.
File in questo prodotto:
File Dimensione Formato  
Morgut.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2917512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact