Carbon nanotubes (CNTs) are promising products in industry and medicine, but there are several human health concerns since their fibrous structure resembles asbestos. The presence of transition metals, mainly iron, in the fibres seems also implicated in the pathogenetic mechanisms. To unravel the role of iron at mesothelial level, we compared the chemical changes induced in MeT-5A cells by the exposure to asbestos (crocidolite) or CNTs at different content of iron impurities (raw-SWCNTs, purified- and highly purified-SWCNTs). We applied synchrotron-based X-Ray Fluorescence (XRF) microscopy and soft X-ray imaging (absorption and phase contrast images) to monitor chemical and morphological changes of the exposed cells. In parallel, we performed a ferritin assay. X-ray microscopy imaging and XRF well localize the crocidolite fibres interacting with cells, as well as the damage-related morphological changes. Differently, CNTs presence could be only partially evinced by low energy XRF through carbon distribution and sometimes iron co-localisation. Compared to controls, the cells treated with raw-SWCNTs and crocidolite fibres showed a severe alteration of iron distribution and content, with concomitant stimulation of ferritin production. Interestingly, highly purified nanotubes did not altered iron metabolism. The data provide new insights for possible CNTs effects at mesothelial/pleural level in humans.

Iron-related toxicity of single-walled carbon nanotubes and crocidolite fibres in human mesothelial cells investigated by Synchrotron XRF microscopy

Cammisuli, Francesca;Rizzardi, Clara;Radillo, Lucia;Zweyer, Marina;Da Ros, Tatiana;Melato, Mauro;Pascolo, Lorella
2018-01-01

Abstract

Carbon nanotubes (CNTs) are promising products in industry and medicine, but there are several human health concerns since their fibrous structure resembles asbestos. The presence of transition metals, mainly iron, in the fibres seems also implicated in the pathogenetic mechanisms. To unravel the role of iron at mesothelial level, we compared the chemical changes induced in MeT-5A cells by the exposure to asbestos (crocidolite) or CNTs at different content of iron impurities (raw-SWCNTs, purified- and highly purified-SWCNTs). We applied synchrotron-based X-Ray Fluorescence (XRF) microscopy and soft X-ray imaging (absorption and phase contrast images) to monitor chemical and morphological changes of the exposed cells. In parallel, we performed a ferritin assay. X-ray microscopy imaging and XRF well localize the crocidolite fibres interacting with cells, as well as the damage-related morphological changes. Differently, CNTs presence could be only partially evinced by low energy XRF through carbon distribution and sometimes iron co-localisation. Compared to controls, the cells treated with raw-SWCNTs and crocidolite fibres showed a severe alteration of iron distribution and content, with concomitant stimulation of ferritin production. Interestingly, highly purified nanotubes did not altered iron metabolism. The data provide new insights for possible CNTs effects at mesothelial/pleural level in humans.
File in questo prodotto:
File Dimensione Formato  
s41598-017-19076-1.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF Visualizza/Apri
41598_2017_19076_MOESM1_ESM.pdf

accesso aperto

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 163.72 kB
Formato Adobe PDF
163.72 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2917564
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact