The role of additives and thermal treatment in the formation of donor–acceptor copolymer organic films of PFO–DBT (poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]) with increased transport properties is addressed by resonant Auger photoemission and core-hole clock spectroscopy, which allows an analysis of the competition between the inner shell core-hole lifetime and the motion of photoexcited electrons on a femtosecond time scale. From the branching of the competing core-hole decay channels, we study the delocalization dynamics of excited electrons over empty molecular orbitals. We find evidence of ultrafast charge-carrier transfer from specific orbitals (LUMO+1) and increased coupling in copolymer assemblies when a solvent additive (1,8 diiodooctane) is added and samples are post-treated with thermal annealing. Relative conformational energies and core-hole spectra were calculated by time-dependent density functional theory.

Additive Driven Increase in Donor-Acceptor Copolymer Coupling Studied by X-ray Resonant Photoemission

Morgante, Alberto;Cvetko, Dean;
2017-01-01

Abstract

The role of additives and thermal treatment in the formation of donor–acceptor copolymer organic films of PFO–DBT (poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]) with increased transport properties is addressed by resonant Auger photoemission and core-hole clock spectroscopy, which allows an analysis of the competition between the inner shell core-hole lifetime and the motion of photoexcited electrons on a femtosecond time scale. From the branching of the competing core-hole decay channels, we study the delocalization dynamics of excited electrons over empty molecular orbitals. We find evidence of ultrafast charge-carrier transfer from specific orbitals (LUMO+1) and increased coupling in copolymer assemblies when a solvent additive (1,8 diiodooctane) is added and samples are post-treated with thermal annealing. Relative conformational energies and core-hole spectra were calculated by time-dependent density functional theory.
File in questo prodotto:
File Dimensione Formato  
acs.jpcc.7b08123.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2918767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact