Starting from an idea of S.L. Adler~\cite{Adler2015}, we develop a novel model of gravity-induced spontaneous wave-function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10^−26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ≤10^−20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ∼10^−21.

Gravity induced wave function collapse

Gasbarri, G.
Membro del Collaboration Group
;
Toroš, M.
Membro del Collaboration Group
;
Donadi, S.
Membro del Collaboration Group
;
Bassi, A.
Membro del Collaboration Group
2017-01-01

Abstract

Starting from an idea of S.L. Adler~\cite{Adler2015}, we develop a novel model of gravity-induced spontaneous wave-function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10^−26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ≤10^−20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ∼10^−21.
File in questo prodotto:
File Dimensione Formato  
PhysRevD.96.104013.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 501.27 kB
Formato Adobe PDF
501.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2918799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact