The occurrence of ultra high pressure (UHP) and high pressure (HP) relicts associated with oceanic material suggests the presence of a suture zone within the Rhodope Massif. Characterisation of the accreted igneous terranes and their relationship with the UHP/eclogite occurrences provide new constraints on the location of this suture. Single-zircon evaporation and sensitive high-resolution ion microprobe dating of orthogneiss protoliths define two groups of intrusion ages: Permo-Carboniferous and Late Jurassic–Early Cretaceous. Structurally, the Late Jurassic gneissic complex overthrust a unit with Permo- Carboniferous orthogneisses. A ‘‘melange zone’’ marked by mylonites, eclogites, amphibolites, and UHP micaschists separates these two units. We interpret these observations in terms of two distinct igneous terranes, the Thracia (Permo- Carboniferous) and Rhodope (Late Jurassic) terranes, separated by the Nestos suture, and assembled during the closure of an oceanic basin of the Tethys. Geochemically, the Late-Jurassic rocks are akin to subduction magmatism, possibly the same subduction that caused the UHP metamorphism of metasediments within the ‘‘melange zone’’. Observed UHP–HP relicts are restricted to the tectonic contact zone, suggesting that a single subduction/collison event can explain the occurrences of UHP relicts and eclogites in the Central Rhodope, and that subducted rocks are exhumed only within the Nestos suture.

Characterisation of igneous terranes by zircon dating: Implications for UHP occurrences and suture identification in the Central Rhodope, northern Greece

Turpaud, Philippe;
2010

Abstract

The occurrence of ultra high pressure (UHP) and high pressure (HP) relicts associated with oceanic material suggests the presence of a suture zone within the Rhodope Massif. Characterisation of the accreted igneous terranes and their relationship with the UHP/eclogite occurrences provide new constraints on the location of this suture. Single-zircon evaporation and sensitive high-resolution ion microprobe dating of orthogneiss protoliths define two groups of intrusion ages: Permo-Carboniferous and Late Jurassic–Early Cretaceous. Structurally, the Late Jurassic gneissic complex overthrust a unit with Permo- Carboniferous orthogneisses. A ‘‘melange zone’’ marked by mylonites, eclogites, amphibolites, and UHP micaschists separates these two units. We interpret these observations in terms of two distinct igneous terranes, the Thracia (Permo- Carboniferous) and Rhodope (Late Jurassic) terranes, separated by the Nestos suture, and assembled during the closure of an oceanic basin of the Tethys. Geochemically, the Late-Jurassic rocks are akin to subduction magmatism, possibly the same subduction that caused the UHP metamorphism of metasediments within the ‘‘melange zone’’. Observed UHP–HP relicts are restricted to the tectonic contact zone, suggesting that a single subduction/collison event can explain the occurrences of UHP relicts and eclogites in the Central Rhodope, and that subducted rocks are exhumed only within the Nestos suture.
Pubblicato
INTERNATIONAL JOURNAL OF EARTH SCIENCES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2919033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? ND
social impact