Prostate-specific membrane antigen (PSMA), a glycoprotein expressed in the prostatic epithelium endowed with enzymatic activity, is a very promising diagnostic marker for the early detection of prostate cancer. In this study, we report a novel electrochemiluminescence ELISA-like immunosensor based on carbon nanotubes and a highly specific sandwich immunoassay for the PSMA detection. To fabricate the device, an optically transparent electrode was modified with doubly functionalized multi-walled carbon nanotubes carrying amine groups and a monoclonal anti-PSMA antibody. Subsequently, to complete the sandwich immunosensing device, a second specific monoclonal anti-PSMA antibody was labelled with a electrochemiluminescent probe. Under optimized experimental conditions, the proposed sensing device exhibits a performance exceeding that of the state of-the-art in terms of the limit of detection (LOD) and limit of quantification (LOQ) as good as 0.88 ng mL−1 and 2.60 ng mL−1, respectively, in real complex samples such as cell lysates. In addition, the unique role of carbon nanotubes is also discussed by comparison with an analogue sensor assembled without the nanocarbon-based material.

Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker

Juzgado, A.;Ostric, A.;Criado, A.
;
Prato, M.
2017-01-01

Abstract

Prostate-specific membrane antigen (PSMA), a glycoprotein expressed in the prostatic epithelium endowed with enzymatic activity, is a very promising diagnostic marker for the early detection of prostate cancer. In this study, we report a novel electrochemiluminescence ELISA-like immunosensor based on carbon nanotubes and a highly specific sandwich immunoassay for the PSMA detection. To fabricate the device, an optically transparent electrode was modified with doubly functionalized multi-walled carbon nanotubes carrying amine groups and a monoclonal anti-PSMA antibody. Subsequently, to complete the sandwich immunosensing device, a second specific monoclonal anti-PSMA antibody was labelled with a electrochemiluminescent probe. Under optimized experimental conditions, the proposed sensing device exhibits a performance exceeding that of the state of-the-art in terms of the limit of detection (LOD) and limit of quantification (LOQ) as good as 0.88 ng mL−1 and 2.60 ng mL−1, respectively, in real complex samples such as cell lysates. In addition, the unique role of carbon nanotubes is also discussed by comparison with an analogue sensor assembled without the nanocarbon-based material.
File in questo prodotto:
File Dimensione Formato  
J Mat Chem B 2017.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
c7tb01557g1.pdf

Accesso chiuso

Descrizione: Supplementary information
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2919660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 61
social impact