The molecular mechanisms leading to Streptococcus mitis capability of entering oral cells were investigated in a co-culture of S. mitis and Human Gingival Fibroblasts (HGFs) in the presence of saliva. An innovative colloidal solution based on silver nanoparticles (Chitlac-nAg), a promising device for daily oral care, was added to the experimental system in order to study the effects of silver on the bacterial overgrowth and ability to enter non-phagocytic eukaryotic cells. The entry of bacteria into the eukaryotic cells is mediated by a signalling pathway involving FAK, integrin β1, and the two cytoskeleton proteins vinculin and F-actin, and down-regulated by the presence of saliva both at 3 and 48 h of culture, whereas Chitlac-n Ag exposure seems to influence, by incrementing it, the number of bacteria entering the fibroblasts only at 48 h. The formation of fibrillary extrusion from HGFs and the co-localization of bacteria and silver nanoparticles within the fibroblast vacuoles were also recorded. After longer experimental times (72 and 96 h), the number of S. mitis chains inside gingival cells is reduced, mainly in presence of saliva. The results suggest an escape of bacteria from fibroblasts to restore the microbial balance of the oral cavity.

Molecular mechanisms driving Streptococcus mitis entry into human gingival fibroblasts in presence of chitlac-nAg and saliva

Marsich, E;
2018-01-01

Abstract

The molecular mechanisms leading to Streptococcus mitis capability of entering oral cells were investigated in a co-culture of S. mitis and Human Gingival Fibroblasts (HGFs) in the presence of saliva. An innovative colloidal solution based on silver nanoparticles (Chitlac-nAg), a promising device for daily oral care, was added to the experimental system in order to study the effects of silver on the bacterial overgrowth and ability to enter non-phagocytic eukaryotic cells. The entry of bacteria into the eukaryotic cells is mediated by a signalling pathway involving FAK, integrin β1, and the two cytoskeleton proteins vinculin and F-actin, and down-regulated by the presence of saliva both at 3 and 48 h of culture, whereas Chitlac-n Ag exposure seems to influence, by incrementing it, the number of bacteria entering the fibroblasts only at 48 h. The formation of fibrillary extrusion from HGFs and the co-localization of bacteria and silver nanoparticles within the fibroblast vacuoles were also recorded. After longer experimental times (72 and 96 h), the number of S. mitis chains inside gingival cells is reduced, mainly in presence of saliva. The results suggest an escape of bacteria from fibroblasts to restore the microbial balance of the oral cavity.
2018
Pubblicato
https://link.springer.com/article/10.1007%2Fs10856-018-6040-x
File in questo prodotto:
File Dimensione Formato  
Molecular mechanism.pdf

Accesso chiuso

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2919776
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact