The strength and effective elastic thickness (Te) of the lithosphere control its response to tectonic and surface processes. Here, we present the first global strength and effective elastic thickness maps, which are determined using physical properties from recent crustal and lithospheric models. Pronounced strength contrasts exist between old cratons and areas affected by Tertiary volcanism, which mostly coincide with the boundaries of seimogenic zones. Lithospheric strength is primarily controlled by the crust in young (Phanerozoic) geological provinces characterized by low Te (~25 km), high topography (>1000 m) and active seismicity. In contrast, the old (Achaean and Proterozoic) cratons of the continental plates show strength primarily in the lithospheric mantle, high Te (over 100 km), low topography (b1000 m) and very low seismicity.
Global strength and elastic thickness of the lithosphere
Tesauro, Magdala
Investigation
;
2012-01-01
Abstract
The strength and effective elastic thickness (Te) of the lithosphere control its response to tectonic and surface processes. Here, we present the first global strength and effective elastic thickness maps, which are determined using physical properties from recent crustal and lithospheric models. Pronounced strength contrasts exist between old cratons and areas affected by Tertiary volcanism, which mostly coincide with the boundaries of seimogenic zones. Lithospheric strength is primarily controlled by the crust in young (Phanerozoic) geological provinces characterized by low Te (~25 km), high topography (>1000 m) and active seismicity. In contrast, the old (Achaean and Proterozoic) cratons of the continental plates show strength primarily in the lithospheric mantle, high Te (over 100 km), low topography (b1000 m) and very low seismicity.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.