Loss of MeCP2 (Methyl CpG binding protein 2) in Rett syndrome (RTT) causes brain weight decrease, shrinkage of the cortex with reduced dendritic arborization, behavioral abnormalities, seizures and cardio-respiratory complications. The observed monoamine neurotransmitters reduction in RTT suggested antidepressants as a possible therapy. We treated MeCP2-null mice from postnatal-day 28 for two weeks with desipramine, already tested in RTT, or mirtazapine, an antidepressant with limited side-effects, known to promote GABA release. Mirtazapine was more effective than desipramine in restoring somatosensory cortex thickness by fully rescuing pyramidal neurons dendritic arborization and spine density. Functionally, mirtazapine treatment normalized heart rate, breath rate, anxiety levels, and eliminated the hopping behavior observed in MeCP2-null mice, leading to improved phenotypic score. These morphological and functional effects of mirtazapine were accompanied by reestablishment of the GABAergic and glutamatergic receptor activity recorded in cortex and brainstem tissues. Thus, mirtazapine can represent a new potential pharmacological treatment for the Rett syndrome.

Pharmacological treatment with mirtazapine rescues cortical atrophy and respiratory deficits in MeCP2 null mice

Bittolo, Tamara;Baj, Gabriele;Vaghi, Valentina;Bernareggi, Annalisa;Tongiorgi, Enrico
2016-01-01

Abstract

Loss of MeCP2 (Methyl CpG binding protein 2) in Rett syndrome (RTT) causes brain weight decrease, shrinkage of the cortex with reduced dendritic arborization, behavioral abnormalities, seizures and cardio-respiratory complications. The observed monoamine neurotransmitters reduction in RTT suggested antidepressants as a possible therapy. We treated MeCP2-null mice from postnatal-day 28 for two weeks with desipramine, already tested in RTT, or mirtazapine, an antidepressant with limited side-effects, known to promote GABA release. Mirtazapine was more effective than desipramine in restoring somatosensory cortex thickness by fully rescuing pyramidal neurons dendritic arborization and spine density. Functionally, mirtazapine treatment normalized heart rate, breath rate, anxiety levels, and eliminated the hopping behavior observed in MeCP2-null mice, leading to improved phenotypic score. These morphological and functional effects of mirtazapine were accompanied by reestablishment of the GABAergic and glutamatergic receptor activity recorded in cortex and brainstem tissues. Thus, mirtazapine can represent a new potential pharmacological treatment for the Rett syndrome.
2016
Pubblicato
https://www.nature.com/articles/srep19796.pdf
File in questo prodotto:
File Dimensione Formato  
69-Pharmacological treatment with mirtazapine in RTT Bittolo 2016 SREP19796.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri
srep19796-s1.pdf

accesso aperto

Descrizione: supplementary information
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 793.16 kB
Formato Adobe PDF
793.16 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2922431
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
social impact